- This document has been reproduced from the best copy furnished by the organizational source. It is being released in the interest of making available as much information as possible.
- This document may contain data, which exceeds the sheet parameters. It was furnished in this condition by the organizational source and is the best copy available.
- This document may contain tone-on-tone or color graphs, charts and/or pictures, which have been reproduced in black and white.
- This document is paginated as submitted by the original source.
- Portions of this document are not fully legible due to the historical nature of some
 of the material. However, it is the best reproduction available from the original
 submission.

Produced by the NASA Center for Aerospace Information (CASI)

NBS REPORT

9732

R-06-006-003 (Farmerly R-45)

THERMAL CONDUCTIVITY, ELECTRICAL RESISTIVITY, AND

THERMOPOWER OF AEROSPACE ALLOYS FROM 4 TO 300 K

J. G. Hust, Robert L. Powell and D. H. Weitzel

(ACCESSION NUMBER)

(FAGES)

(CODE)

(NBS)

(NASA CR OR TMX OR AD NUMBER)

(CATEGORY)

(CATEGORY)

Space nuclear fragultion

Office

U. S. DEPARTMENT OF COMMERCE NATIONAL BUREAU OF STANDARDS

Institute for Basic Standards Boulder, Colorado 80302 14

NATIONAL BUREAU OF STANDARDS

The National Bureau of Standards was established by an act of Congress March 3, 1901. Today, in addition to serving as the Nation's central measurement laboratory, the Bureau is a principal focal point in the Federal Government for assuring maximum application of the physical and engineering sciences to the advancement of technology in industry and commerce. To this end the Bureau conducts research and provides central national services in four broad program areas. These are: (1) basic measurements and standards, (2) materials measurements and standards, (3) technological measurements and standards, and (4) transfer of technology.

The Bureau comprises the Institute for Basic Standards, the Institute for Materials Research, the Institute for Applied Technology, the Center for Radiation Research, the Center for Computer Sciences and Technology, and the Office for Information Programs.

THE INSTITUTE FOR BASIC STANDARDS provides the central basis within the United States of a complete and consistent system of physical measurement; coordinates that system with measurement systems of other nations; and furnishes essential services leading to accurate and uniform physical measurements throughout the Nation's scientific community, industry, and commerce. The Institute consists of an Office of Measurement Services and the following technical divisions:

Applied Mathematics—Electricity—Metrology—Mechanics—Heat—Atomic and Molecular Physics—Radio Physics ²—Radio Engineering ²—Time and Frequency ²—Astrophysics ²—Cryogenics.²

THE INSTITUTE FOR MATERIALS RESEARCH conducts materials research leading to improved methods of measurement standards, and data on the properties of well-characterized materials needed by industry, commerce, educational institutions, and Government; develops, produces, and distributes standard reference materials; relates the physical and chemical properties of materials to their behavior and their interaction with their environments; and provides advisory and research services to other Government agencies. The Institute consists of an Office of Standard Reference Materials and the following divisions:

Analytical Chemistry—Polymers—Metallurgy—Inorganic Materials—Physical Chemistry.

THE INSTITUTE FOR APPLIED TECHNOLOGY provides technical services to promote the use of available technology and to facilitate technological innovation in industry and Government; cooperates with public and private organizations in the development of technological standards, and test methodologies; and provides advisory and research services for Federal, state, and local government agencies. The Institute consists of the following technical divisions and offices:

Engineering Standards—Weights and Measures — Invention and Innovation — Vehicle Systems Research—Product Evaluation—Building Research—Instrument Shops—Measurement Engineering—Electronic Technology—Technical Analysis.

THE CENTER FOR RADIATION RESEARCH engages in research, measurement, and application of radiation to the solution of Bureau mission problems and the problems of other agencies and institutions. The Center consists of the following divisions:

Reactor Radiation-Linac Radiation-Nuclear Radiation-Applied Radiation.

THE CENTER FOR COMPUTER SCIENCES AND TECHNOLOGY conducts research and provides technical services designed to aid Government agencies in the selection, acquisition, and effective use of automatic data processing equipment; and serves as the principal focus for the development of Federal standards for automatic data processing equipment, techniques, and computer languages. The Center consists of the following offices and divisions:

Information Processing Standards—Computer Information — Computer Services — Systems Development—Information Processing Technology.

THE OFFICE FOR INFORMATION PROGRAMS promotes optimum dissemination and accessibility of scientific information generated within NBS and other agencies of the Federal government; promotes the development of the National Standard Reference Data System and a system of information analysis centers dealing with the broader aspects of the National Measurement System, and provides appropriate services to ensure that the NBS staff has optimum accessibility to the scientific information of the world. The Office consists of the following organizational units:

Office of Standard Reference Data—Clearinghouse for Federal Scientific and Technical Information —Office of Technical Information and Publications—Library—Office of Public Information—Office of International Relations.

Headquarters and Laboratories at Gaithersburg, Maryland, unless otherwise noted; mailing address Washington, D.C. 20234.

Located at Boulder, Colorado 80302.

³ Located at 5285 Port Royal Road, Springfield, Virginia 22151.

NATIONAL BUREAU OF STANDARDS REPORT

NBS PROJECT

NBS REPORT

27503-2750430

June 9, 1969

9732

THERMAL CONDUCTIVITY, ELECTRICAL RESISTIVITY, AND

THERMOPOWER OF AEROSPACE ALLOYS FROM 4 TO 300 K

J. G. Hust, Robert L. Powell and D. H. Weitzel

Cryogenics Division
Institute for Basic Standards
National Bureau of Standards
Boulder, Colorado, 80302

IMPORTANT NOTICE

NATIONAL BUREAU OF STANDARDS REPORTS are usually preliminary or progress accounting documents intended for use within the Government. Before material in the reports is formally published it is subjected to additional evaluation and review. For this reason, the publication, reprinting, reproduction, or open-literature listing of this Report, either in whole or in part, is not authorized unless permission is obtained in writing from the Office of the Director, National Bureau of Standards, Washington, D.C. 20234. Such permission is not needed, however, by the Government agency for which the Report has been specifically prepared if that agency wishes to reproduce additional copies for its own use.

U.S. DEPARTMENT OF COMMERCE NATIONAL BUREAU OF STANDARDS

PRECEDING PAGE BLANK NOT FILMED.

TABLE OF CONTENTS

			Page
1.	INTE	RODUCTION	1
2.	EXP	ERIMENTAL APPARATUS	2
	2.1 2.2 2.3 2.4	Specimen Assembly and Thermocouples Temperature Controls	5 6 8 9
3.	SPE	CIMEN PREPARATION AND MEASUREMENT	
	TEC	HNIQUES	10
4.	CAL	CULATIONS AND DATA ANALYSIS	11
	4.1	Thermal Conductivity	11 12 12
	4.2	4.1.3 Continuous method	12 14 14 15
	4.3 4.4	Thermopower	16 17
5.	ERR	OR ANALYSIS	17
	5.1	Temperature Measurement Errors 5.1.1 Reference block temperature	20
	5.2	5.1.2 Specimen temperatures	22
		5.2.1 Conduction losses	24 24
	5.3	5.2.3 Temperature drift effects	27 29
	5.4	Precision and Accuracy	29
6.	SPE	CIMENS	32
7.	RESULTS		32

TABLE OF CONTENTS (Cont.)

		Page
8.	DISCUSSION	36
	8.1 Ti Allo-AT, Inconel 718, and Hastelloy X	36
	8.2 At 7039	36
	8.3 Beryllium	36
	8.4 PO-3 Graphite	37
9.	ACKNOWLEDGMENTS	37
10.	REFERENCES	38

LIST OF FIGURES

			Page
Figure	1	Thermal conductivity apparatus	40
Figure	2	Thermocouple mount	41
Figure	3	Thermopower of Chromel vs Au-Fe	
		$(\underline{Au}\text{-0.07 at.}\% \ \text{Fe})$	42
Figure	4	Emf differences between the thermocouples used	
		in this apparatus and the standard calibration	
		table	43
Figure	5	Control circuit for floating sink	44
Figure	6	Thermal conductivity orthonormal coefficients	
		for Al 7039	45
Figure	7	Electrical resistivity orthonormal coefficients	
		for Al 7039	46
Figure	8	Thermopower orthonormal coefficients for	
		At 7039	47
Figure	9	Thermal conductivity deviations for Ti Allo-AT	48
Figure	10	Electrical resistivity deviations for Ti Allo-AT	49
Figure	11	Thermovoltage deviations for Ti Allo-AT	50
Figure	12	Thermal conductivity deviations for At 7039	51
Figure	13	Electrical resistivity deviations for Al 7039	52
Figure	14	Thermovoltage deviations for Al 7039	53
Figure	15	Thermal conductivity deviations for Inconel 718	54
Figure	16	Electrical resistivity deviations for Inconel 718	55
Figure	17	Thermovoltage deviations for Inconel 718	56
Figure	18	Thermal conductivity deviations for Hastelloy \boldsymbol{X}	57

		Page
Figure 19	Electrical resistivity deviations for	
	Hastelloy X	58
Figure 20	Thermovoltage deviations for Hastelloy X	59
Figure 21	Thermal conductivity deviations for Be	60
Figure 22	Electrical resistivity deviations for Be	61
Figure 23	Thermovoltage deviations for Be	62
Figure 24	Thermal conductivity deviations for PO-3	
	graphite	63
Figure 25	Electrical resistivity deviations for PO-3	
	graphite	64
Figure 26	Thermovoltage deviations for PO-3 graphite	65
Figure 27	Thermal conductivity of Ti Allo-AT	66
Figure 28	Electrical resistivity of Ti Allo-AT	67
Figure 29	Lorenz ratio of Ti Allo-AT	68
Figure 30	Thermopower of Ti Allo-AT	69
Figure 31	Thermal conductivity of At 7039	70
Figure 32	Electrical resistivity of Al 7039	71
Figure 33	Lorenz ratio of Al 7039	72
Figure 34	Thermopower of Al 7039	73
Figure 35	Thermal conductivity of Inconel 718	74
Figure 36	Electrical resistivity of Inconel 718	75
Figure 37	Lorenz ratio of Inconel 718	76
Figure 38	Thermopower of Inconel 718	77
Figure 39	Thermal conductivity of Hastelloy X	78
Figure 40	Electrical resistivity of Hastelloy X	79
Figure 41	Lorenz ratio of Hastelloy X	80

		Page
Figure 42	Thermopower of Hastelloy X	81
Figure 43	Thermal conductivity of Be	82
Figure 44	Electrical resistivity of Be	83
Figure 45	Lorenz ratio of Be	84
Figure 46	Thermopower of Be	85
Figure 47	Thermal conductivity of PO-3 graphite	86
Figure 48	Electrical resistivity of PO-3 graphite	87
Figure 49	Lorenz ratio of PO-3 graphite	88
Figure 50	Thermopower of PO-3 graphite	89

LIST OF TABLES

		Page
Table 1	Radiation losses	26
Table 2	Specimen characterization	33
Table 3	Transport property data for Ti Allo-AT	90
Table 4	Isothermal electrical resistivity data	
	for Ti Allo-AT	98
Table 5	Transport property data for At 7039	100
Table 6	Isothermal property data for At 7039	105
Table 7	Transport property data for Inconel 718	106
Table 8	Isothermal electrical resistivity data for	
	Inconel 718	111
Table 9	Transport property data for Hastelloy X	112
Table l	O Isothermal electrical resistivity data for	
	Hastelloy X	116
Table 1	l Transport property data for Be	117
Table 1	Isothermal electrical resistivity data for Be	121
Table 1	3 Transport property data for PO-3 graphite	122
Table 1	4 Isothermal electrical resistivity data for	
	PO-3 graphite	127
Table 1		
	Ti Allo-AT	129
Table l	6 Parameters in equations 22, 23, and 24 for	
	Al 7039	129
Table 1	7 Parameters in equations 22, 23, and 24 for	
	Inconel 718	129
Table la	8 Parameters in equations 22, 23, and 24 for	
	Hastelloy X	130
Table 1	Parameters in equations 22, 23, and 24 for Be	130 .

		Page
Table 20	Parameters in equations 22, 23, and 24 for	
	PO-3 graphite	130
Table 21	Thermal conductivity deviations of Ti Allo-AT	131
Table 22	Electrical resistivity deviations of Ti Allo-AT	141
Table 23	Thermovoltage deviations of Ti Allo-AT	142
Table 24	Thermal conductivity deviations of At 7039	143
Table 25	Electrical resistivity deviations of At 7039	149
Table 26	Thermavoltage deviations of At 7039	150
Table 27	Thermal conductivity deviations of Inconel 718	151
Table 28	Electrical resistivity deviations of Inconel 718	157
Table 29	Thermovoltage deviations of Inconel 718	158
Table 30	Thermal conductivity deviations of Hastelloy \boldsymbol{X}	159
Table 31	Electrical resistivity deviations of Hastelloy \boldsymbol{X}	165
Table 32	Thermovoltage deviations of Hastelloy X	166
Table 33	Thermal conductivity deviations of Be	167
Table 34	Electrical resistivity deviations of Be	172
Table 35	Thermovoltage deviations of Be	173
Table 36	Thermal conductivity deviations of PO-3 graphite .	174
Table 37	Electrical resistivity deviations of PO-3 graphite .	180
Table 38	Thermovoltage deviations of PO-3 graphite	181
Table 39	Transport properties of Ti Allo-AT	182
Table 40	Transport properties of Al 7039	183
Table 41	Transport properties of Inconel 718	184
Table 42	Transport properties of Hastelloy X	185
Table 43	Transport properties of Be	186
Table 44	Transport properties of PO-3 graphite	187
Table 45	Absolute Thermopower of Normal Silver	
	(Borelius, et al. [15])	188

Thermal Conductivity, Electrical Resistivity, and Thermopower of Aerospace Alloys from 4 to 300 K

J. G. Hust, Robert L. Powell, and D. H. Weitzel

Abstract

An apparatus for the measurement of thermal conductivity, electrical resistivity, and thermopower from 4 to 300 K is described. This apparatus, a modified version of the one used earlier in this laboratory, utilizes the steady-state, axial heat flow method. The specimens are cylindrical rods about 23cm long and 0.1 to 1.0cm² in cross-sectional area. Included is a detailed discussion of the limitations of the apparatus, probable errors, and data analysis methods. Tables and figures of thermal conductivity, electrical resistivity, Lorenz ratio, and absolute thermopowers are presented for titanium alloy A 110-AT, aluminum alloy 7039, Inconel 718, Hastelloy X, reactor grade beryllium, and PO-3 graphite. Extensive raw experimental and computer processed data are also included here to serve as a permanent record. The uncertainty of the property data presented is estimated at 1-2% for thermal conductivity, 0.2% for electrical resistivity, and 0.05 µWK for thermopower.

Key Words

Aluminum alloy, beryllium, cryogenics, electrical resistivity, graphite, Lorenz ratio, nickel alloys, Seebeck effect, thermal conductivity, titanium alloy, and transport properties.

This work was carried out at the National Bureau of Standards under the sponsorship of the NASA-Space Nuclear Propulsion Office, Cleveland.

THERMAL CONDUCTIVITY, ELECTRICAL RESISTIVITY, AND THERMOPOWER OF AEROSPACE ALLOYS FROM 4 to 300 K

J. G. Hust, Robert L. Powell and D. H. Weitzel

I INTRODUCTION

The development of new materials and renewed interest in exising materials by the aerospace industry is creating a demand for thermal and electrical property measurements on these materials. Such data are needed for the selection of suitable construction materials and the prediction of operating characteristics of low temperature systems. To help satisfy the immediate needs for these data an apparatus has been built to measure the thermal conductivity, electrical resistivity, and thermopower of solids. This apparatus is designed to measure samples with thermal conductivities varying from 0.1 to 5,000 W/mK at temperatures from 4 to 300 K. In addition to the measurements reported here on aerospace alloys, measurements will also be made on several standard reference materials. The availability of reference standards will help to further alleviate the dearth of thermal conductivity data by encouraging the construction of new apparatus, especially the more rapid measuring systems based on the comparative method. These reference materials can also be used to check out new absolute apparatus.

Thermal conductivity data of technically important solids accurate to 5% satisfy current demands. However, future demands will likely be more stringent. Standard reference material data should be accurate to better than 1%. For these reasons this program is directed toward the acquisition of thermal conductivity data which are accurate to within 1%. Thermal conductivity data accurate to within

1% are indeed difficult to determine, especially for poor conductors and temperatures above about 120 K, because of the difficulty of maintaining thermal losses at a sufficiently low level.

The present apparatus is patterned after that described by Powell, et al. Because of some important modifications and improved instrumentation a brief description is presented here. This paper contains results of measurements on titanium A-110 AT, Inconel 718, Hastelloy X, aluminum 7039, a reactor grade beryllium and PO-3 graphite. Also included are data analysis methods and an error analysis of this system.

2. EXPERIMENTAL APPARATUS

Of the many methods described in the literature for the measurement of thermal conductivity, probably the simplest both conceptually and mechanically is the axial heat flow method. In this configuration the specimen is in the form of a rod with constant cross-sectional area and the heat flow is along the axis of the rod. This configuration is also convenient for the simultaneous measurement of the electrical resistance and the Seebeck voltage. Accurate measurements can be obtained by this method as long as radiation and other radial losses can be limited to a reasonable value. Above 300 K this is difficult to do except for good conductors. The temperature range of interest in this work is below 300 K; thus the axial heat flow method was chosen to obtain the most accurate data. The apparatus is shown in figure 1.

The use in this paper of trade names of specific products is essential to a proper understanding of the work presented. Their use in no way implies any approval, endorsement, or recommendation by NBS. (See [16] in references).

The cryostat consists of concentrically mounted specimen, specimen shield (filled with glass fiber), vacuum can, and glass cryogen dewar. The glass dewar is supported by a stainless steel container soldered to the top plate to create a closed system. This system is immersed in a nitrogen-filled stainless steel dewar. For temperatures up to about 200 K, the inner glass dewar is filled with liquid helium, hydrogen, or nitrogen depending on the temperature range desired. The outer dewar is filled with liquid nitrogen to reduce the boil-off rate of the liquid in the inner dewar. The pressure above the liquid in the inner dewar is controlled with a manostat to isolate the bath from atmospheric pressure variations which in turn would create temperature variations of the bath. To obtain measurements in the range of 200 to 300 K the outer stainless steel dewar is removed and the inner dewar is filled with either a dry ice-alcohol bath or an ice water bath.

The top end of the specimen is clamped to a temperature controlled copper heat sink (floating sink). A heater is attached to the bottom end of the specimen. The temperature of the specimen is determined at eight equally spaced positions along its length by thermocouples fastened to knife-edged thermocouple holders. Heat losses from the specimen are minimized by evacuating the specimen chamber, surrounding the specimen with a temperature controlled cylindrical shell and filling the space between the specimen and shell with glass fiber. The upper end of the shell surrounding the specimen is attached to the floating sink. The shell temperature distribution is controlled by means of a main heater at the bottom of the shell and three trim heaters equally spaced along the shell. The temperature differences between the specimen and shell are determined by differential thermocouples located at the heater positions.

The floating sink is attached to the lid of the vacuum can by means of three standoff bolts. An electrical heater is wrapped on these bolts to allow temperature control of the floating sink and thus the upper end of the specimen and surrounding shield.

A heavy copper ring (about 10 cm diameter, 1 cm thick and 2.5 cm long) is attached to and in good thermal contact with the lid of the vacuum chamber. This lid in turn is in direct contact with the temperature controlled cryogenic liquid. The copper ring serves as the temperature reference for all of the thermocouples in the system. Mounted in the copper ring is a platinum resistance thermometer to determine the reference temperature for temperatures above 20 K.

The electrical resistance of the specimen is determined by passing an electrical current through it and measuring the potential drop between thermocouple holders number one and eight. Forward and reverse readings are taken to eliminate the Seebeck voltage from this measurement. The Seebeck voltage (thermovoltage) is determined from the difference in forward and reverse readings and is also measured directly with zero electrical current. The Seebeck voltage is measured with respect to "normal" Ag wire (Ag-0.37 at. % Au.)

The differences between this apparatus and that described earlier by Powell, et al [1] are: (1) the addition of the floating sink and its associated control circuitry, (2) two additional trim heaters along the shell surrounding the specimen, (3) use of glass fiber radiation shielding around the specimen to extend measurements above 120 K, (4) pressure control on the space above the cryogenic liquid, (5) use of thermocouples with a higher sensitivity at low temperatures, (6) use of more advanced electronic control circuitry and measuring apparatus.

2.1 Specimen Assembly and Thermocouples

The specimen is clamped at its upper and lower ends to the floating sink and specimen heater respectively. To improve the thermal contact at these clamps a thermal contact grease is applied. Better contact has been obtained using an alloy of indium and gallium (liquid at room temperature). However it was found that this material reacts with aluminum, for example, and probably diffuses quite rapidly with other samples. Its use was discontinued until more of its characteristics are understood.

The specimens are 23 cm long cylinders. The cross-sectional area of each is based on the thermal conductivity of that specimen. The best conductors have the smallest cross-sectional area $(0.02\,\mathrm{cm}^3)$ while the poorest conductors have the largest cross-sectional area $(5\,\mathrm{cm}^3)$. The diameters of these specimens is measured to within \pm 0.0001 cm at several points along each specimen. The maximum diameter variation measured for a given specimen is about \pm 0.0003 cm from the mean diameter.

The thermocouples are attached to the thermocouple holders via epoxy cement, a metal cylinder, and a coating of thermal contact grease. This assembly is shown in figure 2. The knife edge on each thermocouple holder fits into a machined groove (0.05 mm deep) on the specimen. These grooves are machined at a spacing of 2.540 ± 0.003 cm. The actual spacing is determined with a goniometric microscope to ± 0.0001 cm.

The temperature measuring and differential thermocouples are Chromel vs <u>Au-Fe (Au-0.07 at. % Fe)</u>. These thermocouples were fabricated from single rolls of Chromel and <u>Au-Fe</u> wires.

Segments of wire from the beginning and end of these rolls were spot calibrated in the range 4 to 300 K using the boiling point of liquid helium,

liquid hydrogen, liquid nitrogen, the sublimation point of CO2, and the triple point of water. These spot calibrations were compared with the standard table (as established at this laboratory by Sparks, et al [2]) and a new table was established for these thermocouples. The differences between thermocouples from the same roll were negligible, i.e. the emf of a thermocouple constructed from the opposite ends of the Au-Fe wire used in this apparatus was less than I microvolt with one junction in liquid helium and the other junction in ice. This represents a change in the mean thermopower of less than I part in 5000. Also one of the thermocouples in the apparatus was intercompared with a germanium-resistance-thermometer from 4 to 30 K. In this range no difference could be measured between this thermocouple and those fabricated for spot calibration. The thermopower of the standard thermocouple is illustrated in figure 3. The emf differences between the thermocouples used in this apparatus and the standard calibration table are shown in figure 4.

The standard table for these thermocouples presented by Sparks, et al^[2] is based on the temperature scale IPTS-68. The IPTS-68 is the present best estimate of the thermodynamic temperature scale. The gradient along the specimen as determined from these thermocouples and used for calculating thermal conductivity is thus based on the IPTS-68.

2.2 Temperature Controls

High precision temperature controllers are used on the floating sink, the shell surrounding the specimen, and the cryogenic liquid surrounding the specimen chamber. The first two are electronic while the latter is mechanical. The heart of the electronic controllers is a DC proportional and integral amplifier capable of 1 millidegree control when used in conjunction with a DC bridge, differential

thermocouples, and conventional low level (microvolt) amplifiers. This unit was developed by J. C. Jellison and N. C. Winchester of the Cryogenics Division. The control circuit for the floating sink is shown in figure 5. The sensing resistor is a copper wire resistor for temperatures above about 30 K and a conventional carbon resistor for temperatures below about 30 K. The dummy leads shown are leads from the instrumentation rack to the cryostat paralleling those to the sensing resistor. This is to compensate for temperature drift effects on the sensing resistor leads. This circuit is capable of controlling the floating sink temperatures, and therefore the upper end of the specimen, to better than 1 millidegree.

The shell-to-specimen difference temperature is controlled with a similar circuit but the sensing elements are the differential thermocouples between the shell and specimen. This circuit is capable of maintaining the shell temperature within I millidegree of the specimen temperature at the control point. At the present time only the bottom (main) heater on the shell is automatically controlled; the trim heaters are adjusted manually. However in the near future all of these heaters will be placed on automatic control.

The mechanical pressure control (manostat) on the cryogenic liquid surrounding the cryostat is capable of controlling the vapor pressure of the liquid to about 0.1 mm of Hg. This manostat is similar to one described by Plumb. For liquid nitrogen, hydrogen, and helium at their normal boiling points this corresponds to temperature control of 1, 0.3, 0.1 millidegree respectively. At the triple point of nitrogen a pressure variation of 0.1 mm of Hg corresponds to a temperature variation of 5 millidegrees. These numbers are somewhat misleading, since undoubtedly there is some stratification in the liquid.

Thus as the liquid level drops due to boil-off, the temperature at a fixed point in the dewar changes slightly even though the pressure at the surface remains constant.

2.3 Thermal Tempering of Wires

All of the leads attached to the specimen assembly are brought horizontally to the shell, then up the shell and finally to the reference temperature block. On the reference temperature block the wires are all soldered to small copper wires which are taken out of the vacuum system via stainless steel tubes and wax seals at room temperature. It is important that the wires are brought into near thermal equilibrium with the shell and reference block respectively. To accomplish this, a calculated length of wire is cemented to an isothermal region on each of these components. The length calculation has been performed (with a safety factor of about 5) to assure a temperature difference of less than 1 millidegree. Bringing about such equiplibrium is here referred to as thermal tempering or just tempering.

It is obvious in the case of the reference temperature block why these wires must be tempered to the reference block. Any errors which are present due to poor thermal tempering will appear directly in the apparent temperatures of the sample. The differential thermocouples used to control the sample to shell temperature differences must also be well tempered to an isothermal region on the shell. To create isothermal regions on the shell, copper bands are attached to the stainless steel shell at each measuring position. Again the length of wire required to temper to within 1 millidegree has been used. All leads from the specimen are thermally tempered to the shell at the appropriate location to minimize the conduction heat loss along these leads.

All of the copper leads going from the reference temperature block to room temperature are thermally tempered to a copper block in contact with the liquid nitrogen in the outer dewar. This is to reduce heat flow to the reference block and also to reduce the boil-off rate during liquid helium tests.

2.4 Measuring System

To determine the thermal conductivity, electrical resistivity and thermopower as a function of temperature we need to determine the temperature of the reference block, the temperature distribution of the specimen, the specimen heater power, the specimen resistance, the Seebeck emf and the dimensions of the specimen. The emfs are measured with a seven dial potentiometer-null detector system. The temperature of the reference block is determined from the resistance of a platinum resistance thermometer (No. 1037903) calibrated from 10 to 90 K on the NBS-55 scale and above 90 K on the IPTS (1948) scale. Corrections have been applied to convert both of these to the IPTS-68. The 1958 He⁴ vapor pressure scale [4] is used to establish the reference block temperature for the liquid helium tests.

The specimen heater power is determined by measuring the electrical current and voltage across the specimen heater. The voltage leads are connected in such a way so as to include one-half of the power generated in the current leads between the specimen and shell. This is based on the assumption that about one-half of the heat generated in these leads flows to the specimen heater while the other half flows to the shell. The electrical resistance of the wire from specimen to shell is about 0.2% of the total heater resistance. This connecting wire was selected as a compromise to satisfy two conflicting criteria: (a) small electrical resistance compared to the heater resis-

tance,(b) large thermal resistance to minimize heat conduction from specimen to shell. A strip chart recorder is part of the measuring system to facilitate observation of drift rates and other fluctuations in any of the measured voltages.

3. SPECIMEN PREPARATION AND MEASUREMENT TECHNIQUES

The specimens are machined and ground to specified nominal dimensions, after which they are accurately measured in a temperaturecontrolled measurement lab. Without further undue mechanical or thermal abuse, each specimen is fitted with thermocouple holders and heater. The specimen assembly is installed in the cryostat, the space between the shell and specimen is packed with glass fiber, and the vacuum can is soldered into place. The cryostat is evacuated to better than 10⁻⁵ mm of Hg and is subsequently cooled with the desired cryogenic liquid. The specimen is brought into equilibrium with the bath temperature (helium exchange gas at about 100 to 500 microns pressure is generally introduced into the vacuum space to speed the approach to equilibrium). With all power off to the specimen heater and shield heater, the zero emf of the thermocouples are read. These zero corrections caused by various inhomogenities in the circuit are considered to be constant throughout the run with each different cryogenic bath.

Data on a given run are taken only after thermal steady state has been established with a vacuum of better than 10⁻⁵ mm of Hg.

Thermal steady state is considered established after systematic drift of the indicated thermocouple temperatures are below the detectability or controllability limit, approximately 1 millidegree per hour.

Isothermal resistivity data are obtained at the same time that the zero emfs are recorded. Also, to obtain further isothermal resistivity data and information regarding the differences between the eight measuring thermocouples, data are taken with the floating sink above the temperature of the surrounding bath but with no heat input to the specimen. The thermocouples thus indicate the temperature difference from the specimen to the reference block. If the specimen is at equilibrium with the floating sink then all eight thermocouples should produce the same emf. The scatter in these recorded emfs is an indication of the validity of using a single calibration table for all eight thermocouples. No significant deviations between thermocouples have been detected by this procedure.

4. CALCULATIONS AND DATA ANALYSIS

4.1 Thermal Conductivity

The defining equation for one-dimensional heat flow is

$$\dot{Q} = -\lambda (T) A \frac{dT}{dX}$$
 (1)

where \hat{Q} is the rate of heat flow thru the rod, $\lambda(T)$ is the thermal conductivity of the rod at temperature T, A is the cross-sectional area of the rod, and dT/dX is the temperature gradient along the rod at temperature T.

Solving for $\lambda(T)$ we obtain

$$\lambda(T) = -\frac{\dot{Q}}{A} \frac{dX}{dT} . \tag{2}$$

Several methods can be used to obtain λ values from the experimental data.

4.1.1 Difference method

Values of $\lambda(T)$ can be obtained from the measured values of X_i , T_i by equating the derivative dX/dT to the ratio of increments $\Delta X/\Delta T$ (ΔX and ΔT are the distances and temperature differences between adjacent measuring positions on the specimen respectively).

 $\lambda (T) \approx \frac{\dot{Q}}{A} \frac{\Delta X}{\Delta T}$ (3)

This method results in 7 values of $\lambda(T)$ for each run; T is the mean temperature between each adjacent pair of thermocouples.

4.1.2 Semi continuous method

One could also represent functionally the X_i , T_i data by a least squares fit to obtain the parameters, A_1 , A_2 , ... A_m ,

$$X = X(T, A_1, A_2, ..., A_m).$$
 (4)

Then upon differentiation with respect to T to obtain X' = dX/dT, we have

$$\lambda(T) = -\frac{\dot{Q}}{A} X', \tag{5}$$

which yields a continuous set of values of λ over the temperature range of each run. Of course since each run is treated separately one would end up with a set of discontinuous curves.

4.1.3 Continuous method

It would be more desirable to represent the measured data for all of the runs simultaneously. This would have the advantage of resulting in a $\lambda(T)$ function continuous over the entire range of measurement. It is also more desirable because the statistics of

the least squares fit is then based upon 8n points (n is the number of runs) instead of just 8 points. This can be accomplished in the following manner. In the absence of experimental errors it is clear that one should obtain identical values of λ (from overlapping runs) at a given temperature regardless of the value of \dot{Q} , A, or X. For two overlapping runs these variables may be different at the given temperature. Thus if we rewrite equation (2) in the form

$$\lambda(T) = -\frac{dZ}{dT}$$
, where $Z = \frac{\dot{Q}X}{A}$, (6)

we see that

$$Z = Z(T, A_1, A_2, \dots A_m)$$
 (7)

can differ from run to run only by a constant. Thus in general we have

$$Z = Z_{j} (T, A_{1}, A_{2}, \dots A_{m}) + b_{j}.$$
 (8)

The b_j , called shift factors, serve only to account for the discontinuous shifts which occur in the Z versus T values from run to run, and do not appear directly in the function dZ/dT. Thus we can fit the 8n data points to determine the m parameters, A_1 , A_2 , ... A_m , and the n-l shift factors, b_2 , b_3 , ... b_n . Note that the first shift factor is arbitrarily set equal to zero. The number of degrees of freedom of the fit in the absence of other conditions is therefore 7n - m + l. In this experiment we have eight thermocouple measuring stations and the temperature differences between adjacent positions is generally smaller than about $10\,\mathrm{K}$, sometimes less than $1\,\mathrm{K}$. Because of these small temperature differences the results from equations (3), (5), and (6) should be quite similar.

4.2 Electrical Resistivity

The measurement of current through and voltage across the specimen determines the specimen resistance between measuring stations 1 and 8. Most of the measurements are made with a thermal gradient on the specimen and since the measurement is across the entire specimen the total span of temperature may be quite large (over 100 K). Thus, resistivity data, as a function of temperature, must be obtained from measured resistances of a non-isothermal specimen. The defining equation for resistivity is

$$R = \int_{X_1}^{X_2} \frac{\rho(T)dX}{A} . \tag{9}$$

4.2.1 Mean temperature method

The approach generally taken is to assume that $\rho\left(T\right) \text{ and } dX/dT \text{ are slowly varying functions over the specimen, which results in}$

$$\rho(\overline{T}) \approx \overline{\rho}_{x} = \frac{RA}{x_{2}-x_{1}}, \text{ where } \overline{T} = \frac{T_{2}+T_{1}}{2},$$
 (10)

and $\bar{\rho_x}$ is the average resistivity over the specimen.

It is noted that, if large gradients exist in the specimen, equation (10) may be significantly in error. In this experiment we have measured temperatures at eight positions along the specimen thus we can compensate partially for this error by computing T from equation (11)

$$\overline{T} = \frac{\int_{x_1}^{x_2} T dX}{\int_{x_1}^{x_2} dX} \approx \frac{\sum_{i=1}^{7} \overline{T_i} \Delta x_i}{\sum_{i=1}^{7} \Delta x_i}$$
(11)

where the summation extends over the seven measured segments and \overline{T}_i is the mean temperature of the i^{th} segment. One can check the assumptions after obtaining the $\rho(\overline{T})$ curve. The $\rho(\overline{T})$ values are inserted into equation (9) and compared to the experimental data for each run. This calculation is done numerically with

$$R \approx \sum_{i=1}^{7} \frac{\rho(T_i) \Delta X_i}{A} . \qquad (12)$$

The differences between values calculated from equation (12) and measured resistances will indicate whether systematic errors exist in the data representation.

4.2.2 Approximate integral method

One can use the more correct but also more complicated procedure as follows. From equation (9) we obtain

$$RA = \int_{\mathbf{x}_1}^{\mathbf{x}_2} \rho(T) d\mathbf{x} \approx \sum_{i=1}^{7} \rho(\overline{T}_i) \Delta X_i$$
 (13)

where $\overline{T_i}$ is the mean temperature of the i^{th} segment. Now we assume a function a form for the resistivity versus temperature equation over the temperature range of all the measurements.

$$\rho(T) = a_1 f_1(T) + a_2 f_2(T) + \dots a_m f_m(T)$$
 (14)

where a_1 , a_2 ... a_m are parameters and f_1 , f_2 ... f_m are specified functions of temperature. Substituting (14) into (13) we obtain

$$RA = a_1 \sum_{i=1}^{7} f_1(\overline{T}_i) \Delta X_i + a_2 \sum_{i=1}^{7} f_2(\overline{T}_i) \Delta X_i + \ldots + a_m \sum_{i=1}^{7} f_m(\overline{T}_i) \Delta X_i.$$
(15)

With the n experimental values of R ($n \ge m$) we may perform a least squares fit of (15) to determine the m parameters, a_1 , $a_2 \dots a_m$.

Some of the electrical resistivity measurements are carried out under isothermal conditions. For these measurements one obtains from (9) and (14)

$$RA = \frac{\rho(T)}{X_2 - X_1} = \frac{a_1 f_1(T)}{X_2 - X_1} + \frac{a_2 f_2(T)}{X_2 - X_1} + \dots + \frac{a_m f_m(T)}{X_2 - X_1}$$
(16)

where T is measured. Thus (15) and (16) can be used simultaneously to determine the parameters.

4.3 Thermopower

The problem of determining the thermopower of a specimen is similar to that for determining the electrical resistivity. The quantity measured is the Seebeck voltage, V_s , over the temperature interval T_1 to T_2 . The thermopower, S_s , is defined by

$$V_{s} = \int_{T_{1}}^{T_{2}} SdT = \overline{S}(T_{2} - T_{1}). \tag{17}$$

For small gradients the equation (difference method)

$$\frac{\overline{S}(T) \approx \frac{V_s}{T_2 - T_1}$$
 (18)

yields a relatively accurate estimation of the thermopower at temperature \overline{T} . However as the gradients become larger, if S varies with T, this approximation becomes progressively worse. An approach which allows one to circumvent this difficulty is based on the following integral method. Assume a functional form for S,

$$S = b_1 g'_1(T) + b_2 g'_2(T) + ... + b_m g'_m(T)$$
, where $g'_i = \frac{dg_i}{dT}$ (19)

Performing the integration in (17) we obtain

$$V_{s} = b_{1} [g_{1}(T_{2}) - g_{1}(T_{1})] + b_{2} [g_{2}(T_{2}) - g_{2}(T_{1})] + \dots + b_{m} [g_{m}(T_{2}) - g_{m}(T_{1})].$$
(20)

Equation (20) is dependent upon the measured variables V_8 , T_2 , T_1 , and the parameters b_1 , b_2 ,..., b_m . The m parameters can be determined by least squares fitting of $n \ge m$ sets of measurements.

4.4 Lorenz Ratio

The Lorenz ratio, L, is defined as the product of the total thermal conductivity, λ , and electrical resistivity, ρ , divided by temperature, T.

$$L = \frac{\rho \lambda}{T} \cdot \tag{21}$$

Methods have been described to obtain λ and ρ as a function of temperature. These functions may be used directly to obtain the Lorenz ratio as a function of temperature.

ERROR ANALYSIS

Terms such as accuracy, uncertainty, imprecision, etc are used with various meanings by different authors. This is due, at least in part, to the lack of rigorous definitions for some of these terms. To avoid this confusion a brief discussion of such terms is included here. This discussion is generally consistent with papers by Eisenhart, Natrella, ASTM ASTM and Ku.

In this paper the words accuracy and precision will refer to a measurement process while the word uncertainty will refer to the reported values obtained from such a process. The uncertainty of a reported value is indicated by giving credible limits within which the "true" value is to be found. There is, of course, a certain amount of risk that the true value will fall outside of these limits. The

reporter's estimate of the magnitude of this risk is generally not made clear. Some authors will give limits which allow essentially no risk (100% confidence) others will allow large risk (say less than 50% confidence). In this paper we will consider the risk to be relatively small (about 95% confidence). The uncertainty of a reported value is determined by the accuracy (strictly inaccuracy) of a measurement process and, in part, by the number of times the process is repeated.

The accuracy of a given measurement process is determined by both the random and systematic (bias) errors inherent in the measurement process. The magnitude of the total random error determines the precision (strictly, the imprecision) of the measurement. Precision thus concerns the closeness together or repeatability of measurements; while accuracy concerns closeness to what was to be measured. This implies that one must also very carefully state that which is to be measured. For example, in this work we measured the thermal conductivity of specific specimens, not of specific materials. To do the latter one would have to measure several specimens of each material. The usual basis of the indices of precision is the standard deviation of the statistical distribution of the measurement involved. Unfortunately, a single comprehensive measure of accuracy (or inaccuracy), analgous to the standard deviation as a measure of imprecision, does not exist. To characterize the accuracy of a measurement process it is necessary to indicate (a) its systematic error or bias and the degree of confidence of the writer (b) its precision using a well defined index of precision. It is noted that the statistically precise concept of a family of confidence intervals associated with a definite confidence level is applicable only to data based on a measurement process encompassing an adequate sampling of the total range of circumstances. It follows that these concepts are not strictly

applicable when systematic errors are a significant part of the inaccuracy of the measurement process. In many experiments, especially this one, it is highly impractical to accomplish an adequate sampling of the total range of circumstances and thus a subjective estimate of the magnitude of systematic errors is necessary to completely describe the uncertainty of the results presented.

To characterize the uncertainty of a reported value, we will use the same approach as in characterizing the accuracy of a measurement process: (1) indicate the probable systematic error in the final result at an estimated 95% confidence, (2) indicate the imprecision of the final result by giving the standard deviation of the mean (commonly called the standard error). Note that the standard error is dependent upon the number of measurements, while the standard deviation of the measurement process is not.

The total uncertainty of a reported value will be indicated by a single number obtained from the bias estimator (95% confidence) and the equivalent 95% confidence level confidence interval based on the imprecision of the measurements. The root-mean-square value of these independent quantities is taken as the uncertainty of the reported data.

It is to be noted that the data and final results reported in this report are properties of specific specimens. These data do not represent the properties of the indicated materials since no attempt has been made to ascertain the variability between specimens of the same material. It thus follows that the uncertainties presented includ only our measurement uncertainty not the material variability. Material variability may well be as much as 5 to 10%. This may be thought of in terms of the range of circumstances investigated. Since material variability was not part of this range, it represents a possible source of systematic error, i.e., these results do not represent the mean of several specimens of the same material.

The experimental errors in this work are classed generally as temperature measurement errors and heat flow errors. Each of these can be further subdivided into systematic and random errors. Both of these affect the overall uncertainty of the results but the latter determines the imprecision of the measurement process. Some of these errors are systematic errors on a single run but tend to become randomized over the entire sequence of measurements on a single specimen. It is desirable to randomize as many as possible of the potential systematic errors (i.e. make measurements over a larger range of circumstances) to get a better measure of the probable data uncertainty from the imprecision of the measurement process.

5.1 Temperature Measurement Errors

In the determination of the uncertainty of thermal conductivity and thermopower both temperature and temperature difference errors must be considered. In the measurement of electrical resistivity, however, only the temperature measurement errors contribute to the total uncertainty. This distinction should be noted in the following discussion.

5.1.1 Reference block temperature

The reference junction for each of the thermocouples is on the reference block. Thus any error in the temperature determination of the reference block will appear in all other measured temperatures. The reference block temperature is determined with a platinum resistance thermometer (PRT) for each of the runs except the liquid helium runs. The PRT measurements are uncertain by 0.01 K below 90 K and 0.002 K above 90 K. The PRT measurement uncertainty is caused primarily by thermally and electrically induced noise. This PRT was calibrated in 1953 by NBS, Washington. In

1966 its calibration was checked by L. L. Sparks of the Cryogenics Division, NBS, Boulder. The differences found at 20, 75, and 273 K were -0.00057, 0.00007, and 0.0002 ohms respectively. These differences were plotted and interpolations were performed on the resulting curve to obtain a new calibration for this PRT. The interpolation is uncertain to about 5 mK in the 20 to 90 K range and 1 mK in the 100 to 273 K range.

The reference block temperatures for the liquid helium runs are determined using the 1958 He⁴ vapor pressure scale. The temperatures obtained from the He⁴ vapor pressure determinations are uncertain by 0.01 K. Neither the measurement of vapor pressure nor the temperature-pressure relation contribute a significant error. However the reference ring temperature may be slightly higher than the liquid helium temperature because of heat flow across the interface between the specimen chamber lid and the liquid helium. Also there may be some stratification in the liquid resulting in actual temperatures slightly lower than the measured temperatures. Neither of these effects produces a systematic error in the case of the PRT measurements at higher temperatures since the PRT is mounted directly on the reference block.

The thermal tempering calculations indicate that the thermocouple reference junctions are within 1 mK of the reference block.

5.1.2 Specimen temperatures

The measured specimen temperatures may be in error for several reasons. Thermocouple calibration errors, specimen temperature disturbances caused by the attachment of thermocouples, thermocouple contact resistance, extraneous thermal emfs, and reference block temperature measurement errors are contributing factors to the total specimen temperature error. As pointed out in section 2.1 the thermocouple calibration is determined from the standard table as modified by spot calibrations for these specific spools of wire. The calibration uncertainties of the standard table are reported by Sparks, et al [2] as less than 0.015 K. The interpolation-calibration uncertainty of the subsequent spool calibration is somewhat larger. The deviations between the spool calibration and the standard table are shown in figure 4. Interpolations from figure 4 are uncertain by luV between 4 and 20 K and 2µV between the higher temperature calibration points. The interpolation error will be greatest midway between the calibration points. This corresponds to a maximum absolute temperature uncertainty of about 0.1 K and a relative temperature difference uncertainty of 0.5% between 4 and 20 K, 0.2% between 20 and 76K and 0.1% above 76K. Another source of error is present since all thermocouples are represented by a single calibration table. Real differences undoubtedly exist between these thermocouples; however, as indicated previously these differences are less than $l\mu V$, even for a temperature interval from 4 to 300 K.

The magnitude of the temperature disturbance caused by the thermocouple attachment will be small if the shell temperature is adjusted to minimize heat flow along the thermocouples to the sample. This adjustment also minimizes the problem introduced

by thermal contact resistance between the specimen and the thermocouples. It is difficult to assess the effect of these errors separately. Frrors caused by these effects, combined with conduction and radiation losses, are considered in a later section.

Extraneous thermal emf in the thermocouple leads are in part eliminated by considering the isothermal zero readings previously mentioned. Experimentally these zero readings are found to consist of a fixed component and a smaller variable component. The former is probably caused by the general environment of the apparatus and the latter by short term temperature fluctuations in the apparatus. The fixed component of the zero readings is eliminated by subtracting it from the experimental data in the presence of a gradient. The variable component contributes about 0.01 K to experimental imprecision in the temperature differences.

The total uncertainty in temperature and temperature difference is taken as the root-mean-square of the above components. This method of propagating errors is valid for independent errors. The possible error in temperature, primarily of a systematic nature, may be as high as $0.10\,\mathrm{K}$ above $20\,\mathrm{K}$ and 0.5% of temperature below $20\,\mathrm{K}$. The uncertainty in temperature differences contains both systematic and random components. The systematic errors in ΔT may approach 0.5% of ΔT between 4 and $20\,\mathrm{K}$, 0.2% of ΔT between 20 and $76\,\mathrm{K}$, and 0.1% of ΔT above $76\,\mathrm{K}$. The uncertainty in ΔT due to random error is about $0.01\,\mathrm{K}$.

5.2 Heat Flow Errors

The rate of heat generated by the heater at the bottom of the specimen is calculated from potentiometric measurements of voltage and current. Not all of the heat flows up the specimen. Some is lost, by conduction, through connecting leads, glass fiber packing, and gas. Some is lost, by radiation, to the shell and other components

in the specimen chamber. Some heat is also effectively lost or gained due to temperature drift and the associated enthalpy changes of the specimen assembly.

5.2.1 Conduction lesses

The heat lost by conduction has been directly measured at low temperatures where radiation losses are negligible. These measurements, accomplished by heating up the shell a known amount with respect to the specimen, indicate a loss or gain of about 0.01 mW per degree difference between shell and specimen. These losses increase with temperature due to the increase of the thermal conductivity of the connecting components. This measured value agrees with the calculated value to within the combined uncertainty of both values (50%). It has been found experimentally that this heat loss amounts to a small fraction (< 0.1%) of the total heat flow for a typical gradient and specimen-to-shell temperature differences which are 1 mK at the bottom of the specimen and 0.1 K at the top.

5.2.2 Radiation losses

An upper limit has been established for the radiation loss from the specimen. This calculation is based upon a knowledge of the thermal conductivity (including radiation transfer) of the glass fiber packing. The thermal conductivity of glass fiber as a function of packing density was reported by Christiansen, et al. They determined room temperature (300 K) conductivities of 0.0065 and 0.0011 Wm⁻¹ K⁻¹ at fiber densities of 1/2 and 15 lb/ft³ (8.6 to 260 kg/m³) respectively. At 190 K the measured values were 0.0048 and 0.00056 Wm⁻¹K⁻¹ at 8.6 and 260 kg/m³ respectively. However the measurements at 190 K were done with an enclosure emissivity of about 0.9 while at 300 K the emissivity was 0.2. Thus the decrease

in thermal conductivity from 300 to 190K was not as great as if the emissivities had been the same in both cases. The fiber density in this thermal conductivity apparatus was about 5 kg/m3 for the aluminum and titanium measurements. By varying the shell-to-specimen temperature, data was obtained which resulted in a rough measure of the thermal conductivity of the glass fiber at 300 K. The value obtained, 0.008 Wm⁻¹K⁻¹, is in reasonable agreement with the data by Christiansen, et al. [9,10] In later measurements the packing density was increased to further reduce the radiation heat losses. The radiation losses that exist due to temperature differences between the specimen and shell are on the order of 1 mW per degree difference at 300 K. However if the shell is maintained at nearly the same temperature distribution as the specimen we need not be concerned about this. We do need to consider the radiation loss through the glass fiber parallel to the specimen, part of which comes from the specimen assembly and part from the shell. Assuming that the ratio of these heat losses is proportional to the ratios of the areas of each part we can establish an upper limit to the percentage heat loss of the specimen as a function of the product \(\lambda \) A of the specimen at 300 K and at 190 K. Table 1 contains these upper limits at fiber densities of 8 and 260 kg/m³. The ratio of shell-to-specimen surface areas (including specimen heater, thermocouple holders, and leads) is taken as constant at 4:1.

Table 1
Radiation Losses
Percent Radiation Loss*

Specimen	19	0 K	300 K	
$\lambda A(WmK^{-1})$	$5 \mathrm{kg/m^3}$	$260 \mathrm{kg/m^3}$	5 kg/m^3	$260 \mathrm{kg/m^3}$
1×10^{-4}	1.6	. 2	13.0	1.6
2	. 8	.1	6.4	. 8
4	. 4	. 05	3.2	. 4
6	. 25	.03	2.0	. 3
8	.20	.025	1.6	. 2
10×10^{-4}	. 15	.020	1.2	. 2

^{*} enclosure emissivity = 0.9

The smallest λ A encountered in the measurements reported here is $6 \times 10^{-4} \ \mathrm{WmK^{-1}}$ at 300 K. Thus the radiation error with a packing density of $5 \ \mathrm{kg/m^3}$ is estimated to be less than 2% at 300 K for the poorest condition to measured. At 200 K this error is less than 0.25%.

5.2.3 Temperature drift effects

As the temperature of the specimen assembly varies, the heat content or enthalpy of the assembly changes. These enthalpy variations represent corresponding changes in the rate of heat flow at a given point in the specimen. The obvious solution to this problem is to obtain true steady state conditions. Of course it is experimentally impossible to do this exactly and so one must design the system such that the effect of maximum temperature drift rates at "steady state" are tolerable. The amount of heat per unit time, $\dot{\Omega}_{\rm drift}$, absorbed or liberated by the specimen assembly due to a temperature drift of dT/dt can be estimated from

$$\dot{Q}_{\text{drift}} = \sum \left(\text{Cm} \frac{\text{dT}}{\text{dt}} \right) = \left(\text{Cm} \frac{\text{dT}}{\text{dt}} \right)_{\text{heater}} + \left(\text{Cm} \frac{\text{dT}}{\text{dt}} \right)_{\text{sample}} + \left(\text{Cm} \frac{\text{dT}}{\text{dt}} \right)_{\text{thermosology}}$$

$$\text{couple holders}$$

where C is specific heat and m is mass. The specific heat of these materials changes greatly between 4 and 300 K. The largest specific heats occur at 300 K and thus the severest restriction on the tolerable dT/dt will be seen at 300 K. The mass of the aluminum heater block is 15 g. The mass of the eight thermocouple holders varies from 15 to 45 g depending on specimen size. The cross-sectional areas of the various specimens are adjusted in accordance to their relative conductivities so that the rate of heat flow is about the same for a given temperature and temperature gradient. However specimens larger than about 2 cm diameter cannot be used in this apparatus. A specimen such as Inconel 718 represents about the worst case, i.e., smallest heat flow for a given gradient and largest heat capacity.

The rate of heat flow to produce a small (say 10 K) temperature difference across this entire sample at 300 K is 0.04 watts. The mass of the Inconel 718 specimen is 200 g. To insure that enthalpy changes of the specimen assembly are less than say 0.1% of 0.04 watts we obtain

$$\frac{dT}{dt} \leq .0015 \, \text{K/hr}$$

or for Chromel vs Au-Fe thermocouples

$$\frac{dE}{dt} \leq 0.03 \mu \text{ Whr.}$$

Thus the control system on the floating sink must be stable to within about $0.0015\,\mathrm{K/hr}$ and the measuring instrumentation must be capable of detecting changes in thermocouple emfs of $0.03\mu\,\mathrm{V/hr}$. In each case this represents approximately the limitation of these systems.

In summary, we can say that at low temperatures (below 100 K) the uncertainty in the amount of heat flowing in the specimen is negligible (< 0.1%) if the temperature of the specimen is steady to within the limitations of this instrumentation (0.0015 K/hr) and if the shell-to-specimen temperature difference is less than 0.1 K.

Above 100 K radiation heat transfer parallel to the specimen becomes important. For Inconel 718 the radiation heat loss may be as much as 2% even if the shell temperature matches the specimen temperature. If a shell-to-specimen mismatch occurs, radiation perpendicular to the specimen will introduce a heat loss of about 20 mW per degree difference.

5.3 Dimensional and Measuring System Errors

The errors in measuring cross-sectional area and thermocouple position are relatively small. The uncertainty in the diameter determinations is less than 0.0001 cm, this for the smallest specimen measured (0.1 cm2 cross-sectional area) corregands to 0.03%. The position of the thermocouples is measured to which 0.0001 cm. The separation between adjacent thermocouples (2. :m) is therefore accurate to within 0.004%. The properties presented in this paper are with respect to the room temperature dimensions of the specimen. If the properties at the true dimensions are desired small corrections must be applied for contraction of the specimens upon cooling. This correction is on the order of 0.1% at 4K for these specimens. The uncertainties introduced by the measuring instruments are also in general negligible compared to other uncertainties in the system. The thermocouple, and specimen resistance voltages are measured to within 0.0 luV. The specimen heater voltage and current are measured to better than 0.01%. The PRT voltages and currents are measured to better than 0.01%, except at 20 K where the uncertainty in PRT voltages is 0.1%.

5.4 Precision, Accuracy, and Uncertainty

The primary objective of the preceding error analysis is to obtain an estimate of the probable systematic errors in this measurement process. The expected imprecision of the measurement process also may be estimated from this analysis; however, a more reliable estimate of the imprecision is obtained from a statistical analysis of the experimental results. The estimated systematic errors of the properties reported here are obtained through the use of error propagation formulas [8] and the estimated systematic errors in the measured variables. Considerable experimental effort has been directed toward

assessing the validity of these estimates. Runs have been repeated; runs have been conducted with overlapping temperature ranges at a given reference block temperature and also with different reference block temperatures; in some cases the specimen has been measured, removed, reassembled, and remeasured; the effect of shell-to-specimen temperature differences has been investigated; to randomize systematic thermocouple calibration errors, eight thermocouples were used along the specimen instead of only two or three; the effect of specimen temperature drift has been experimentally investigated. These investigations and the design of the apparatus results in a high degree of confidence in our error estimates.

The estimated systematic error in thermal conductivity, caused primarily by error in determination of heat flow and temperature difference, is 2% at 300 K decreasing as T⁴ to 0.2% at 200 K, 0.2% from 200 K to 50 K increasing again to 1% at 4 K. The estimated systematic error in electrical resistivity is 0.05% below 30 K and 0.1% at higher temperatures. At low temperatures the electrical resistivity becomes essentially independent of temperature, except for the graphite specimen, and thus the systematic errors are primarily due to dimensional errors. The systematic error for graphite is estimated as 0.1% over the entire range.

The systematic error in thermopower with respect to the reference material (normal silver) is estimated to be less than 0.5% + 0.01 μ V/K at 4K, falling to 0.2% + 0.01 μ V/K at 30K, and to 0.1% + 0.01 μ V/K above 76K.

Estimates of the standard deviations of the measurement processes for thermal conductivity, electrical resistivity, and thermovoltage are obtained from all of the data obtained at this time. The

standard deviation of the measurement process is computed from the variance of the least squares fit, i.e. the sum of the squares of the residuals divided by the degrees of freedom. The standard deviation of the thermal conductivity measurement is 1.0% of the conductivity based on values ranging from 0.7 to 1.7% for various specimens. The standard deviation of the electrical resistance measurement depends strongly on the resistivity of the specimens. The standard deviation for the better conductors such as Be is about 0.1%. For the poorer conductors the standard deviation of the electrical resistance measurement is about 0.01%. The larger deviations can be reduced somewhat by using a larger electrical current through the good conductors, however, care must be exercised to avoid transient heating effects caused by the power dissipation in the small connecting leads. The standard deviation of the thermovoltage measurements is 0. luV based on values ranging from 0.04 to 0.14µV for the various specimens.

Estimates of the standard errors of the reported calculated values for thermal conductivity, electrical resistivity, and thermopower are calculated from the variance-covariance matrix of the parameters determined by least squares fit for each of the data sets. The method of calculation is given by Natrella $^{\left[6\right]}$ (Standard deviation of a predicted point, page 6-12). The computed values are temperature dependent and vary from specimen to specimen; average values of the standard error are 0.25% for thermal conductivity and 0.1% for electrical resistivity at low temperatures and 0.05% at high temperatures. The standard error for thermopower varies from 0.1 μ V/K at the lower temperatures to 0.003 μ V/K at the higher temperatures.

Based on these estimates of possible systematic bias and standard error, we estimate (with 95% confidence) the uncertainty in thermal conductivity to be 2.5% at 300 K, decreasing as T^4 to 0.70% at 200 K, 0.70% from 200 K to 50 K, increasing to 1.5% at 4 K. The uncertainty in electrical resistivity is 0.25%. Thermopower uncertainty is estimated as $0.5\% \pm 0.2\mu V/K$ at 4 K, $0.2\% \pm 0.05\mu V/K$ at 30 K, and $0.1\% \pm 0.03\mu V/K$ above 76 K.

6. SPECIMENS

Measurements have been performed on several aerospace alloys and PO-3 graphite. The characterization data for these specimens are presented in Table 2. All specimens except beryllium were measured in the "as received" condition. The reactor grade beryllium specimen is the same one measured by Powell, et al. [11] Since that time it has been bombarded with a neutron fluence of $1.1 \times 10^{18} \text{n/cm}^2$ (E > 1 MeV) which reduced its conductivity by about 50%. It was subsequently annealed at room temperature and then remeasured.

7. RESULTS

The experimental data are listed in Tables 3 thru 14. These data were functionally represented by least squares. The methods used of the various methods described in section 4 are (a) the difference method for thermal conductivity (section 4.1.1), (b) the approximate integral method (section 4.2.2) for electrical resistivity, and (c) the integral method for thermopower. The other methods described in section 4 were also attempted but for various reasons they were discarded in favor of those indicated above.

The functions chosen to represent these three transport properties were chosen rather arbitrarily, since adequate relationships based upon theoretical considerations are not available. These functional forms chosen for thermal conductivity, electrical resistivity, and thermopower are given by equations (22), (23), and (24) respectively:

Table 2 Specimen Characterization

Material (Diameter)	Condition (Structure)	Rockwell Hardness	Av. Grain Size(mm)	Composition Weight % (less than 0.1% listed only)
Ti-AllO AT (1.13 cm)	Annealed (HCP)	C - 35	0.015	Ti-91.5, A&-5.5, Sn-2.5, Fe-0.2, C, N, H.
At 7039 (0.367 cm)	T 61 (FCC)	B - 75	0.005 (10:1 elonga- tion with sample length	Al-93.0, Zn-3.6, Mg-2.55, Mn-0.23, Cr-0.20, Fe, Cu, Si, Ti, Be.
Inconel 718 (1,13 cm)	Age-hard- ened (BCC + FCC ppt)	C-39	0.06	Ni-54.57, Cr-18.06, Fe-17.08, Nb+Ta-5.12, Mo-3.18, Ti-0.85, Al-0.44, Mn-0.29, Si-0.24, Cu, C, S.
Hastelloy X (1.13 cm)	Annealed (BCC + FCC ppt)	B-88	0.08	Ni-49.0, Cr-21.06, Fe-17.58, Mo-9.15, Co-1.45, W-0.65, Mn-0.53, Si-0.43, C-0.12, P, S.
Be (Reactor grade) axis of sample is to pressing axis (0.367 cm)	Neutron irradiated and room temper- ature an- nealed (HCP)	C-12	0.03	Be-98.7, BeO-1.18, Al, Ni, Mn, B, Li.
PO-3 Graphi (1.06 cm)	te			

$$\ln \lambda = \sum_{i=1}^{n} a_{i} [\ln T]^{i+1}$$
 (22)

$$p = \sum_{i=1}^{m} b_{i} [\ln T]^{i+1}$$
 (23)

$$S = \sum_{i=1}^{l} c_{i} [\ln T']^{i} / T'; T' = \frac{T}{10} + 1$$
 (24)

The parameters determined by least squares fit are tabulated in tables 15 thru 20. The following is a brief description of the method used. The overdetermined set of equations defined by the experimental data and the equation chosen to represent the data was formed. This set of equations was converted to an orthonormal system according to the Bjorck modification of the Gram-Schmidt orthoganilization procedure. [13] The orthonormal coefficients for these orthonormal functions are then obtained for the best fit of the data. The absolute magnitude of each resulting coefficient is indicative of the relative significance of the corresponding term and also directly indicates the average absolute magnitude of that term. This is so since the sum of squares of each orthonormal function is unity over the data set. A plot of the absolute magnitudes of the orthonormal coefficients versus the term number will exhibit a generally decreasing character until the noise level of the data is reached and then fluctuate about that value. The point at which the noise level is reached indicates the number of terms one should retain in the function in order to best fit the data with this function. This test procedure is similar to, but more straightforward and more intuitively desirable than, a statistical test such as the F-test. From

these orthonormal coefficients and functions one obtains the coefficients (parameters) of the original equation. In this work the original equation is also fitted to the data using the more common procedure in which one establishes the so-called normal equations and obtains the least squares coefficients by matrix inversion. The Gauss-Jordan matrix inversion routine [14] is used. Since the coefficients for a least squares fit must be unique, disagreement between these two independently obtained sets of coefficients is thus considered as an indication of significant round-off error. The magnitudes of the orthonormal coefficients for Al-7039 are plotted in figures 6, 7, and 8 to illustrate typical behavior. The deviations of the experimental data from the calculated values are shown in figures 9 thru 26 and are tabulated in tables 21 thru 38. The absence of systematic trends in these deviation plots indicates that the data were not "underfitted", i.e., the data were fitted to within random error. Calculated values of the properties measured are shown in figures 27 thru 50 and tabulated in tables 39 thru 44. The absence of oscillations in the calculated properties, not exhibited by the experimental data, shows that the data were not "overfitted", i.e., the minimum number of terms was used to fit within the random error of the data.

The thermopower values presented here are absolute values although the measurements were carried out with respect to normal silver wire. The absolute thermopowers of normal silver reported by Borelius, et al., for temperatures from 2 to 293 K were used to correct to the absolute scale. They estimate their values, given in table 45, to be accurate to \pm 0. $1\mu V/K$.

8. DISCUSSION

8.1 Ti Allo-AT, Inconel 718, and Hastelloy X

The titanium alloy Ti Allo-AT and the nickel alloys Inconel 718 and Hastelloy X exhibit similar behavior in many respects. The thermal conductivity values are not only similar in trend but also the same in magnitude to about 20%. The electrical resistivity of each of these materials is high and the room temperature to liquid helium resistance change is small. Each of the electrical resistivity curves exhibits a minimum near 25 K. The high Lorenz ratios of these materials indicates that the lattice contribution to the total conductivity is up to six times as large as the electron contribution. Such high lattice contributions for alloys are often alluded to in the literature but not often confirmed experimentally.

8.2 At 7039

The aluminum alloy (7039) has a thermal conductivity trend similar to the titanium and nickel alloys however the magnitude of the conductivity of Al 7039 is about an order of magnitude higher. Also it is clear from the Lorenz ratio that the heat conduction is primarily due to the electron contribution and not the lattice. The electrical resistivity is smaller than for the titanium and nickel alloys and the electrical resistivity ratio is appreciably higher. No minimum occurs in the electrical resistivity curve of Al 7039

8.3 Beryllium

The beryllium specimen was measured primarily as a control specimen in conjunction with the irradiation effects program at General Dynamics, Fort Worth, Texas. For this reason no data were taken below 70 K. For further details on these data and comparisons with earlier measurements see NBS Report 9713 (30th Progress Report to NASA).

8.4 PO-3 Graphite

The measurements on PO-3 graphite were also carried out for comparison with measurements made by General Dynamics, Fort Worth, Texas. These comparisons are given in NBS Report 9717 (31st Progress Report to NASA).

9. ACKNOWLEDGEMENTS

We wish to thank R. H. Kropschot for his many helpful suggestions, discussions and guidance. The supply of materials from Aerojet General Corporation, Titanium Corporation of America and Union Carbide Co. is also acknowledged. The assistance of R. P. Reed and R. L. Durcholz on material characterization is appreciated. Of great help was the instrumentation design and development by J. C. Jellison and N. C. Winchester. G. H. Wallace assisted in the early phases of apparatus construction. William J. Hall made available his orthonormal fitting routine which has been helpful in fitting the data.

10. REFERENCES

- 1. Powell, R. L., Rogers, W. M., and Coffin, D. O., An Apparatus for Measurement of Thermal Conductivity of Solids at Low Temperatures, J. Res. NBS 59, 349-355 (1957).
- 2. Sparks, L. L., Powell, R. L., and Hall, W. J., To be published in Advances in Cryogenic Engineering, Vol. 14 (1969); also later and more detailed in an NBS Monograph.
- 3. Cataland, G., Edlow, M. H., and Plumb, H. H., Liquid Helium Vapor Pressure Regulator, Rev. Sci. Instrum. 32, No. 8, 980-981 (1961).
- 4. Brickwedde, F. G., Durieux, M., Clement, J. R., and Logan, J. K., The 1958 He⁴ Scale of Temperature, J. Res. NBS <u>64A</u>, No. 1, 1-17 (1960).
- 5. Eisenhart, C., Realistic Evaluation of the Precision and Accuracy of Instrument Calibration Systems, J. Res. NBS <u>67C</u>, No. 2, 161-187 (1963).
- 6. Natrella, M. G., Experimental Statistics, NBS Handbook 91, U. S. Government Printing Office, Washington, D. C. (1963).
- 7. ASTM (1961) Use of the Terms Precision and Accuracy as
 Applied to Measurement of a Property of a Material, ASTM
 Designation E177-61T, ASTM Standards, Pt. 11, pp.1758-1766.
- 8. Ku, H. H., Notes on the Use of Propagation of Error Formulas, J. Res. NBS 70C, No. 4 (1966).
- 9. Christiansen, R. M., and Hollingsworth, Jr., M., The Performance of Glass Fiber Insulation Under High Vacuum, Advances in Cryogenic Engineering (K. D. Timmerhaus, ed., Plenum Press, New York, 1960), Vol. 4, p. 141.

- 10. Christiansen, R. M., Hollingsworth, Jr., M., and Marsh, Jr., H. N., Low Temperature Insulating Systems, Advances in Cryogenic Engineering (ed. K. D. Timmerhaus, Plenum Press, 1960), Vol. 5, p. 171.
- 11. Powell, R. L., Harden, J. L., and Gibson, E. F., Low-Temperature Transport Properties of Commercial Metals and Alloys.

 IV Reactor Grade Be, Mo, and W., J. Appl. Phys. 31, 1221-24

 (1960).
- 12. Private communication, Palmer, E. E., NARF, General Dynamics, Fort Worth Division, Fort Worth, Texas.
- 13. Bjorck, A., Solving linear least squares problems by Gram-Schmidt orthogonalization, BIT 7, 1-21 (1967).
- 14. Golden, J. T. (1965) FORTRAN IV Programming and Computing (Prentice-Hall, Inc., Englewood Cliffs, New Jersey.
- 15. Borelius, G., Keesom, W. H., Johansson, C. H., and Linde, J. O., Establishment of an absolute scale for the thermoelectric force, Proc. Kon. Akad. Amsterdam 35, 10 (1932).
- 16. Hastelloy is a registered trade name for a nickel-Chromiumiron alloy produced by Union Carbide Corporation, Stellite Division.

Inconel is a registered trade name for a nickel-Chromiumiron alloy produced by International Nickel Corporation.

PO-3 is a registered trade name for a graphite produced by Pure Carbon Company.

Chromel is a registered trade name of an alloy produced by Hoskins Manufacturing Company.

Figure 1 Thermal conductivity apparatus

8- 71754

THERMOCOUPLE MOUNT

Figure 2 Thermocouple mount

Figure 3 Thermopower of Chromel vs Au-Fe (Au-0.07 at. % Fe)

Figure 4 Emf differences between the thermocouples used in this apparatus and the standard calibration table.

Figure 5 Control circuit for floating sink

Figure 6 Thermal conductivity orthonormal coefficients for At 7039

Figure 7 Electrical resistivity orthonormal coefficients for At 7039

Figure 8 Thermopower orthonormal coefficients for Al 7039

Figure 9 Thermal conductivity deviations for Ti Allo-AT

Figure 10 Electrical resistivity deviations for Ti Allo-AT

Figure 11 Thermovoltage deviations for Ti Allo-AT

Figure 12 Thermal conductivity deviations for At 7039

Figure 13 Electrical resistivity deviations for Al 7039

Figure 14 Thermovoltage deviations for At 7039

Figure 15 Thermal conductivity deviations for Inconel 718

Figure 16 Electrical resistivity deviations for Inconel 718

Figure 17 Thermovoltage deviations for Inconel 718

Figure 18 Thermal conductivity deviations for Hastelloy X

Figure 19 Electrical resistivity deviations for Hastelloy X

Figure 20 Thermovoltage deviations for Hastelloy X

Figure 21 Thermal conductivity deviations for Be

Figure 22 Electrical resistivity deviations for Be

Figure 23 Thermocoltage deviations for Be

Figure 24 Thermal conductivity deviations for PO-3 graphite

Figure 25 Electrical resistivity deviations for PO-3 graphite

Figure 26 Thermovoltage deviations for PO-3 graphite

Figure 27 Thermal conductivity of Ti Allo-AT

Figure 28 Electrical resistivity of Ti Allo-AT

Figure 29 Lorenz ratio of Ti Allo-AT

Figure 30 Thermopower of Ti Allo-AT

Figure 31 Thermal conductivity of Al 7039

Figure 32 Electrical resistivity of At 7039

Figure 33 Lorenz ratio of Al 7039

Figure 34 Thermopower of At 7039

Figure 35 Thermal conductivity of Inconel 718

Figure 36 Electrical resistivity of Inconel 718

Figure 37 Lorenz ratio of Inconel 718

Figure 38 Thermopower of Inconel 718

Figure 39 Thermal conductivity of Hastelloy X

Figure 40 Electrical resistivity of Hastelloy X

Figure 41 Lorenz ratio of Hastelloy X

Figure 42 Thermopower of Hastelloy X

Figure 43 Thermal conductivity of Be

Figure 44 Electrical resistivity of Be

Figure 45 Lorenz ratio of Be

Figure 46 Thermopower of Be

Figure 47 Thermal conductivity of PO-3 graphite

Figure 48 Electrical resistivity of PO-3 graphite

Figure 49 Lorenz ratio of PO-3 graphite

Figure 50 Thermopower of PO-3 graphite

The data listed in tables 3 thru 14 are, in part, card images of experimental data as read into the computer for data processing. These data are not clearly labelled. The following is a line by line explanation of tables 3, 5, 7, 9, 11, and 13.

1st line - Data identification

2nd line - Sample heater voltage (μV), current (mA), platinum resistance thermometer voltage (μV), cryogenic bath pressure (mm of Hg), room temperature (c), platinum resistance thermometer current (mA), code indicating type of cryogenic bath (1 = Liquid helium, 2 = liquid hydrogen, 3 = liquid nitrogen, 4 = dry ice- alcohol, 5 = ice-water)

3rd line - Thermocouple emfs (μV)

4th line - Seebeck emf (µV), specimen current (mA), specimen voltage drop (µV)

5th line - Thermocouple temperatures (K)

6th line - Heater power (watts), Reference temperature (K), specimen resistance (ohms).

Table 3 Transport property data for Ti Allo-AT

THERMAL COND							
440415		-0.00		25.0			
49.26	58.82	68.11	76.94	85.01	93.00	100.77	107.90
-1.84	100.00	242.67					
THERMOCOUPLE	TEMPERAT	URES					
	8.180	The second secon	9.328	9.847	10.337	10.805	11.253
HEATER POMER						141045	*****
1.9480-003		4.070	arone or	2.4267-0			
THERMAL COND	DUCTIVITY	DATA ON TI	ASSOAT 7	AUG 67 124	5 PM		
		-0.00				4 0	
101 77	110 56	136.35	153.10	155 54	100 74	104 30	20/ 01
-5.14	119.56	242 50	152.10	100.04	160.71	194.28	206.91
	100.00						
THERMOCOUPLE				44 707			
10.849	11.957	12.937	15.860	14.727	15.545	16.527	17.075
HEATER POWER			ATURE SP				
4.8783-003		4.053		2.4258-0	03		
TUEDHAL COND	WCT1VITY	DATA ON TI	******	AUC 67 345	DM		
THERMAL COND							
		-0.00					
101.59	119.24	135.91	151.56	166.00	180.05	193.56	206.15
-5.10							
THERMOCOUPLE							
		12.910				16.285	17.030
HEATER POWER		NCE TEMPER	ATURE SP				
4.8784-003		4.052		2.4258-0	03		
TUEDHAL COND				AUG 67 400			
THERMAL COND							
		-0.00					202 =/
		258.31	285.65	510.95	555.25	558.55	380.56
-15.90							
THERMOCOUPLE							
		20.048				25.890	27,200
HEATER POWER	REFERE	The second secon	ATURE SP	And the second s	The state of the s		
1.2598-002		4.052		2.4250-0	03		

Table 3 (Cont.)

1153671 1 298.03 -18.57 THERMOCOUPLE	CTIVITY DATA ON TI A110AT 7 AUG 67 640 PM 1.5840 -0.00 652.7 25.5 324.49 349.82 373.97 396.73 41 100.00 242.58 TEMPERATURES 23.902 25.385 26.796 28.152 29	-0.0 1.0 8.96 440.58	461.26
	REFERENCE TEMPERATURE SPECIMEN RESISTA	NCE	
1.3364-002	4.052 2.4258-103		
THERMAL CONDU	CTIVITY DATA ON TI A110AT 7 AUG 67 745 PM		
199253	2.0000 -0.00 651.8 25.0 16.97 19.84 22.67 25.08 2 100.00 242.84	-0.0 1.0	
14.32	16.97 19.84 22.67 25.08 2	7.73 30.39	32.60
-0.40	100.00 242.84		
THERMOCOUPLE		000 000	/ /11
	5.283 5.491 5.688 5.878 6 REFERENCE TEMPERATURE SPECIMEN RESISTA		6.411
	4.051 SPECIFIEN RESISTA	NCE	
3.9631-004	4.001 2.4204-003		
THERMAL CONDU	CTIVITY DATA ON TI A110AT 7 AUG 67 1045 PM		
374772	3.7634 -0.00 603.7 25.0	-0.0 1.0	
	47.31 54.77 61.90 68.36 7	4.84 81.17	86.89
	100.00 242.74		
	TEMPERATURES		
	7.545 7.855 8.295 8.725 9		9.892
HEATER POWER	REFERENCE TEMPERATURE SPECIMEN RESISTA	NCE	
1.4104-003	3.974 2.4274-003		
THERMAL CONDU	CTIVITY DATA ON TI A110AT 2 AUG 67 900 PM		
861347	8.6500 111.11 606.1 25.5	1.0 2.0	
66.34	80.47 94.52 108.21 121.27 13	4.20 147.01	159.19
-10.26	8.6500 111.11 606.1 25.5 80.47 94.52 108.21 121.27 13 100.00 242.53		
THERMOCOUPLE	TEMPERATURES		
	24.571 25.391 26.189 26.969 27		29.212
	REFERENCE TEMPERATURE SPECIMEN RESISTA	NCE.	
7.4506-003	19.895 2.4253-003		

Table 3 (Cont.)

THEDMAI CON	A						
				AUG 67 101			
863350	8.6700	111.11	606.1	25.5	1.0	2.0	
66.45	80.58	94.63	108.26	121.52	134.27	147.07	159.2
-10.26	100.00	242.55					
THERMOCOUPL							
25.770	-	25.429	26.224	27.004	27.764	28.513	29 24
HEATER PONE						20.010	27.27
7.4852-003	The second secon			2.4253-1			
7.4652 005							
THERMAL CON	DUCTIVITY	DATA ON TI	A110AT 3	AUG 67 250	PM		
1212484 193.03 -22.42	12 1700	113.57	651 3	24 0	1.0	2.0	
105 05	215 63	257 97	250 61	280 47	301 08	321 10	2.41 2
-32.43	100.00	207.97	239.01	200.47	501.00	321.49	341.6
THERMOCOUPL	E TEMPERAT	246.90					
	** ***		75 707	TC CAE	#7 070	70 007	40.30
31.404	52.765	54.094	35.383	36.645	31.819	59.097	40.29
31.404 HEATER PONE 1.4756-002	K KEPEKE	MCE TEMPER	ATURE SP	ECTIMEN RES	SISTANCE		
1.4756-002		20 ORR		2.4296-0	10.5		
114.00 002		20.000		2.42.00	••		
THERMAL CON	DUCTIVITY	DATA ON TI	A110AT 3	AUG 67 507	PM		
THERMAL CON	DUCTIVITY	DATA ON TI	A110AT 3	AUG 67 507	PM	2.0	(72.2
THERMAL CON 2090693 296.90	DUCTIVITY 20.9600 355.94	DATA ON TI 114.81 412.82	A110AT 3 653.2 467.47	AUG 67 507	PM	2.0 622.54	672.2
THERMAL CON 2090693 296.90 -70.09	DUCTIVITY 20.9600 355.94 100.00	DATA ON TI 114.81 412.82 244.36	A110AT 3 653.2 467.47	AUG 67 507	PM	2.0 622.54	672.2
THERMAL CON 2090693 296.90 -70.09 THERMOCOUPL	DUCTIVITY 20.9600 355.94 100.00 E TEMPERAT	DATA ON TI 114.81 412.82 244.36 URES	A110AT 3 653.2 467.47	AUG 67 507 23.0 520.15	1.0 571.77		
THERMAL CON 2090693 296.90 -70.09 THERMOCOUPL 37.716	DUCTIVITY 20.9600 355.94 100.00 E TEMPERAT 41.272	DATA ON TI 114.81 412.82 244.36 URES 44.670	A110AT 3 653.2 467.47	AUG 67 507 23.0 520.15	7 PM 1.0 571.77		
THERMAL CON 2090693 296.90 -70.09 THERMOCOUPL 37.716 HEATER PONE	DUCTIVITY 20.9600 355.94 100.00 E TEMPERAT 41.272 R REFERE	DATA ON TI 114.81 412.82 244.36 URES 44.670 NCE TEMPER	A110AT 3 653.2 467.47 47.911 ATURE SP	AUG 67 507 23.0 520.15 51.030 ECIMEN RES	7 PM 1.0 571.77 54.048 SISTANCE		
THERMAL CON 2090693 296.90 -70.09 THERMOCOUPL	DUCTIVITY 20.9600 355.94 100.00 E TEMPERAT 41.272 R REFERE	DATA ON TI 114.81 412.82 244.36 URES 44.670 NCE TEMPER	A110AT 3 653.2 467.47 47.911 ATURE SP	AUG 67 507 23.0 520.15 51.030 ECIMEN RES	7 PM 1.0 571.77 54.048 51STANCE	56.989	
THERMAL CON 2090693 296.90 -70.09 THERMOCOUPL 37.716 HEATER PONE 4.3817-002	DUCTIVITY 20.9600 355.94 100.00 E TEMPERAT 41.272 R REFERE	DATA ON TI 114.81 412.82 244.36 URES 44.670 NCE TEMPER 20.183	A110AT 3 653.2 467.47 47.911 ATURE SP	AUG 67 507 23.0 520.15 51.030 ECIMEN RES 2.4436-0	1.0 571.77 54.048 51STANCE	56.989	
THERMAL CON 2090693 296.90 -70.09 THERMOCOUPL 37.716 HEATER POME 4.3817-002	DUCTIVITY 20.9600 355.94 100.00 E TEMPERAT 41.272 R REFERE	DATA ON TI 114.81 412.82 244.36 URES 44.670 NCE TEMPER 20.183	A110AT 3 653.2 467.47 47.911 ATURE SP	AUG 67 507 23.0 520.15 51.030 ECIMEN RES 2.4436-0	1.0 571.77 54.048 51STANCE	56.989	59.86
THERMAL CON 2090693 296.90 -70.09 THERMOCOUPL 37.716 HEATER PONE 4.3817-002	DUCTIVITY 20.9600 355.94 100.00 E TEMPERAT 41.272 R REFERE	DATA ON TI 114.81 412.82 244.36 URES 44.670 NCE TEMPER 20.183	A110AT 3 653.2 467.47 47.911 ATURE SP	AUG 67 507 23.0 520.15 51.030 ECIMEN RES 2.4436-0	1.0 571.77 54.048 51STANCE	56.989	59.86
THERMAL CON 2090693 296.90 -70.09 THERMOCOUPL 37.716 HEATER PONE 4.3817-002 THERMAL CON 2912700 422.44	DUCTIVITY 20.9600 355.94 100.00 E TEMPERAT 41.272 R REFERE DUCTIVITY 29.1500 525.83	DATA ON TI 114.81 412.82 244.36 URES 44.670 NCE TEMPER 20.183 DATA ON TI 117.08 625.50	A110AT 3 653.2 467.47 47.911 ATURE SP	AUG 67 507 23.0 520.15 51.030 ECIMEN RES 2.4436-0	1.0 571.77 54.048 51STANCE	56.989	59.86
THERMAL CON 2090693 296.90 -70.09 THERMOCOUPL 37.716 HEATER PONE 4.3817-002 THERMAL CON 2912700 422.44 -138.80	DUCTIVITY 20.9600 355.94 100.00 E TEMPERAT 41.272 R REFERE DUCTIVITY 29.1500 525.83 100.00	DATA ON TI 114.81 412.82 244.36 URES 44.670 NCE TEMPER 20.183 DATA ON TI 117.08 625.50 246.84	A110AT 3 653.2 467.47 47.911 ATURE SP	AUG 67 507 23.0 520.15 51.030 ECIMEN RES 2.4436-0	1.0 571.77 54.048 51STANCE	56.989	59.86
THERMAL CON 2090693 296.90 -70.09 THERMOCOUPL 37.716 HEATER PONE 4.3817-002 THERMAL CON 2912700 422.44 -138.80 THERMOCOUPL	DUCTIVITY 20.9600 355.94 100.00 E TEMPERAT 41.272 R REFERE DUCTIVITY 29.1500 525.83 100.00 E TEMPERAT	DATA ON TI 114.81 412.82 244.36 URES 44.670 NCE TEMPER 20.183 DATA ON TI 117.08 625.50 246.84 URES	A110AT 3 653.2 467.47 47.911 ATURE SP A110AT 4 651.8 721.70	AUG 67 507 23.0 520.15 51.030 ECIMEN RES 2.4436-0 AUG 67 115 22.7 814.94	54.048 5157ANCE 003 1.0 906.51	56.989 2.0 997.06	59.86
THERMAL CON 2090693 296.90 -70.09 THERMOCOUPL 37.716 HEATER PONE 4.3817-002 THERMAL CON 2912700 422.44 -138.80 THERMOCOUPL 45.386	DUCTIVITY 20.9600 355.94 100.00 E TEMPERAT 41.272 R REFERE DUCTIVITY 29.1500 525.83 100.00 E TEMPERAT 51.510	DATA ON TI 114.81 412.82 244.36 URES 44.670 NCE TEMPER 20.183 DATA ON TI 117.08 625.50 246.84 URES 57.312	A110AT 3 653.2 467.47 47.911 ATURE SP A110AT 4 651.8 721.70	AUG 67 507 23.0 520.15 51.030 ECIMEN RES 2.4436-0 AUG 67 115 22.7 814.94	7 PM 1.0 571.77 54.048 51STANCE 003 50 AM 1.0 906.51	56.989 2.0 997.06	59.86 1086.2
THERMAL CON 2090693 296.90 -70.09 THERMOCOUPL 37.716 HEATER PONE 4.3817-002 THERMAL CON 2912700 422.44 -138.80 THERMOCOUPL	DUCTIVITY 20.9600 355.94 100.00 E TEMPERAT 41.272 R REFERE DUCTIVITY 29.1500 525.83 100.00 E TEMPERAT 51.510 R REFERE	DATA ON TI 114.81 412.82 244.36 URES 44.670 NCE TEMPER 20.183 DATA ON TI 117.08 625.50 246.84 URES 57.312 NCE TEMPER	A110AT 3 653.2 467.47 47.911 ATURE SP A110AT 4 651.8 721.70	AUG 67 507 23.0 520.15 51.030 ECIMEN RES 2.4436-0 AUG 67 115 22.7 814.94 68.109 ECIMEN RES	54.048 571.77 54.048 51STANCE 003 1.0 906.51 73.218	56.989 2.0 997.06	59.86 1086.2

Table 3 (Cont.)

THERMAL CONDUCTIVITY DATA ON TI A110AT 4 AUG 67 520 PM 3663255 36.5900 117.82 651.8 24.5 1.0 546.57 699.51 847.34 990.54 1130.40 1267.63 -220.72 100.00 249.86 THERMOCOUPLE TEMPERATURES	1405.71	
52.781 61.634 69.964 77.908 85.522 92.859 HEATER POWER REFERENCE TEMPERATURE SPECIMEN RESISTANCE 1.3396-001 20.397 2.4986-003	100.023	107.019
THERMAL CONDUCTIVITY DATA ON TI A110AT 4 AUG 67 810 PM		
1180319 11.8500 110.34 651.5 23.0 1.0	2.0	257 22
1180319 11.8500 110.34 651.5 23.0 1.0 99.94 124.72 148.84 171.99 194.14 215.75 -20.23 100.00 242.68	236.91	251.33
THERMOCOUPLE TEMPERATURES		
25.845 27.315 28.736 30.103 31.431 32.716	33.976	35.208
HEATER POWER REFERENCE TEMPERATURE SPECIMEN RESISTANCE 1.3987-002 20.037 2.4268-003		
1.5567-002		
THERMAL CONDUCTIVITY DATA ON TI A110AT 25 JULY 67 106 PM		
998867 10.0000 4589.11 602.7 24.5 1.0	3.0	101 05
28.50	91.58	101.85
THERMOCOUPLE TEMPERATURES		
77.016 77.593 78.171 78.745 79.318 79.887	80.458	81.026
HEATER POWER REFERENCE TEMPERATURE SPECIMEN RESISTANCE		
9.9824-003 75.452 2.4939-003		
THERMAL CONDUCTIVITY DATA ON TI ASSORT 25 V 67900 PM		
1405902 14.0700 4556.18 579.1 24.0 1.0	3.0	
52.58 73.33 94.13 114.80 135.40 155.91	176.35	196.81
1405902 14.0700 4556.18 579.1 24.0 1.0 52.58 73.33 94.13 114.80 135.40 155.91 -32.44 100.00 249.98		
THERMOCOUPLE TEMPERATURES		
78.039 79.176 80.312 81.436 82.556 83.666	84.775	85.875
HEATER POWER REFERENCE TEMPERATURE SPECIMEN RESISTANCE 1.9767-002 75.152 2.4998-003		
1.5101-002		

Table 3 (Cont.)

THERMAL CONDUCTIVITY DATA ON TI A110AT 26 JULY 67 137 PM 1979530 19.7950 4561.73 578.6 24.0 1.0 102.73 143.52 184.31 224.75 264.96 304.94 344 -64.58 100.00 251.29 THERMOCOUPLE TEMPERATURES	3.0 .87 384.71
30.830 83.047 85.252 87.427 89.581 91.711 93.1 HEATER POWER REFERENCE TEMPERATURE SPECIMEN RESISTANCE 3.9147-002 75.202 2.5129-003	833 95.937
THERMAL CONDUCTIVITY DATA ON TI A110AT 27 JULY 67 230 PM	
2786202 27.8200 4572.94 579.1 24.5 1.0 202.58 282.09 361.26 459.50 517.07 593.90 670 -128.40 100.00 253.84	3.0
202.58 282.09 561.26 459.50 517.07 595.90 670	.41 746.39
THERMOCOUPLE TEMPERATURES	
86.336 90.595 94.799 98.916 102.969 106.952 110.0	894 114.779
HEATER POWER REFERENCE TEMPERATURE SPECIMEN RESISTANCE	
7.7391-002 75.304 2.5384-003	
THE DAME CONDUCTIVITY DATA ON THE ALART OF THE COLUMN	
THERMAL CONDUCTIVITY DATA ON TI A110AT 28 JULY 67 1000 AM	z ^
3003875 29.9500 4611.05 579.4 25.0 1.0 504.93 594.26 683.18 770.95 857.82 944.08 1030	20 1115 00
-150.17 100.00 257.47	.20 1115.70
THERMOCOUPLE TEMPERATURES	
102.665 107.298 111.872 116.352 120.757 125.101 129.	415 133.679
HEATER POWER REFERENCE TEMPERATURE SPECIMEN RESISTANCE	
8.9697-002 75.652 2.5747-003	
THERMAL CONDUCTIVITY DATA ON TI A110AT 28 JULY 67 620 PM	
3062771 30.5000 4748.10 651.9 25.5 1.0	3.0
806.41 896.59 986.43 1074.87 1162.22 1249.16 1336	.15 1422.91
-157.32 100.00 260.82	
THERMOCOUPLE TEMPERATURES	
119.302 123.855 128.360 132.767 137.095 141.378 145.6	645 149.874
HEATER POWER REFERENCE TEMPERATURE SPECIMEN RESISTANCE	
9.2942-002 76.899 2.6082-003	

Table 3 (Cont.)

THERMAL CONDUCTIVITY DATA ON TI A110AT 29 JULY 67 630 PM 2052975 20.5400 3510.06 140.0 24.5 1.0 120.75 165.73 210.64 255.09 299.19 343.01 -69.46 100.00 249.74 THERMOCOUPLE TEMPERATURES	3.0 386.74	430.30
72.305 74.799 77.273 79.706 82.108 84.480 HEATER POWER REFERENCE TEMPERATURE SPECIMEN RESISTANCE 4.2140-002 65.542 2.4974-003	86.839	89.173
THERMAL CONDUCTIVITY DATA ON TI A110AT 30 JULY 67 110 PM 2052969 20.5400 3509.37 141.0 23.6 1.0 118.84 163.76 208.61 253.03 297.10 340.88 -69.36 100.00 249.71 THERMOCOUPLE TEMPERATURES	3.0 384.55	428.02
72.194 74.684 77.156 79.588 81.989 84.360 HEATER POWER REFERENCE TEMPERATURE SPECIMEN RESISTANCE 4.2140-002 65.536 2.4971-003	86.716	89.046
THERMAL CONDUCTIVITY DATA ON TI A110AT 31 JULY 67 1010 AM 2052005 20.5400 3509.64 140.3 23.9 1.0 121.75 166.72 211.63 256.09 300.16 343.94 -69.44 100.00 249.74 THERMOCOUPLE TEMPERATURES	3.0 387.62	431.13
72.358 74.851 77.325 79.758 82.159 84.529 HEATER POWER REFERENCE TEMPERATURE SPECIMEN RESISTANCE 4.2141-002 65.539 2.4974-003		89.215
THERMAL CONDUCTIVITY DATA ON TI A110AT 1 AUG 67 330 PM 997395 9.9930 3389.83 116.8 25.6 1.0 29.88 40.72 51.64 62.50 73.30 84.10 -16.28 100.00 247.32 THERMOCOUPLE TEMPERATURES	3.0 94.87	105.66
66.109 66.721 67.336 67.945 68.552 69.156 HEATER POWER REFERENCE TEMPERATURE SPECIMEN RESISTANCE 9.9635-003 64.423 2.4732-003	69.761	70.363

THERMAL CONDUCTIVITY DATA ON TI A110AT 19 SEPT 67 900 PM 2081870 20.6500 17162.00 630.4 24.0 1.0 138.62 173.66 208.52 242.86 277.10 311.26 -72.83 100.00 274.34 THERMOCOUPLE TEMPERATURES	345.94	
198.765 200.393 202.012 203.604 205.190 206.771 HEATER POWER REFERENCE TEMPERATURE SPECIMEN RESISTANCE 4.1787-002 192.302 2.7434-003	208.373	209.993
THERMAL CONDUCTIVITY DATA ON TI A110AT 20 SEPT 67 1100 AM 2081880 20.6500 17232.20 633.6 23.0 1.0 123.68 158.82 193.74 228.15 262.45 296.68 -72.98 100.00 274.34	4.0 331.42	366.56
THERMOCOUPLE TEMPERATURES 198.740 200.373 201.994 203.590 205.179 206.763 HEATER POWER REFERENCE TEMPERATURE SPECIMEN RESISTANCE 4.1787-002 192.975 2.7434-003	208.368	209.991
THERMAL CONDUCTIVITY DATA ON TI A110AT 21 SEPT 67 900 AM 3646840 36.1000 17245.50 630.8 23.0 1.0 248.69 354.10 457.88 559.56 660.14 760.02 -222.89 100.00 277.44 THERMOCOUPLE TEMPERATURES	4.0 861.07	963.02
204.668 209.542 214.324 218.995 223.603 228.166 HEATER POWER REFERENCE TEMPERATURE SPECIMEN RESISTANCE 1.2672-001 193.103 2.7744-003	232.772	237.408
THERMAL CONDUCTIVITY DATA ON TI A110AT 28 SEPT 67 406 PM 3319795 32.7200 25460.30 628.8 24.0 1.0 170.38 240.84 309.24 376.01 441.98 507.84 -171.37 100.00 289.45 THERMOCOUPLE TEMPERATURES	5.0 575.56	645.21
280.657 283.803 286.857 289.838 292.783 295.724 HEATER POWER REFERENCE TEMPERATURE SPECIMEN RESISTANCE 9.6132-002 273.033 2.8945-003	298.747	301.857

The data listed in tables 3 thru 14 are, in part, card images of experimental data as read into the computer for data processing. These data are not labelled clearly. The following is a line by line explanation of tables 4, 6, 8, 10, 12, and 14.

1st line - Data identification

Platinum resistance thermometer voltage (µV), cryogenic bath pressure (mm of Hg), room temperature (c), platinum resistance thermometer current (mA), code indicating type of cryogenic bath (1 = liquid helium, 2 = liquid hydrogen, 3 = liquid nitrogen, 4 = dry ice-alcohol, 5 = ice-water), specimen current (mA), specimen voltage (µV), mean emf of eight thermocouples (µV)

3rd line - Reference temperature (K), specimen resistance (ohms), specimen temperature (K).

Table 4 Isothermal electrical resistivity data for Ti Allo-AT

1SOTHERMAL RESISTIVITY DATA FOR TI A110-AT 7 AUG 67 82 -0.00 604.30 25.00 -0.00 1.00 REFERENCE TEMPERATURE SPECIMEN RESISTANCE SPECIMEN 3.975 2.4289-003	100.00 2	
1SOTHERMAL RESISTIVITY DATA FOR TI A110-AT 5 AUG 67 50 -0.00 663.50 24.80 -0.00 1.00 REFERENCE TEMPERATURE SPECIMEN RESISTANCE SPECIMEN 4.069 2.4288-003	100.00	242.88 0.00 URE
150THERMAL RESISTIVITY DATA FOR TI A110-AT 2 AUG 67 60 110.15 652.00 26.80 1.00 2.00 REFERENCE TEMPERATURE SPECIMEN RESISTANCE SPECIMEN 20.464 2.4249-003	100.00 TEMPERATE	242.49 0.00 URE
ISOTHERMAL RESISTIVITY DATA FOR TI A110-AT 24 JULY 67 4620.40 629.20 25.00 1.00 3.00 REFERENCE TEMPERATURE: SPECIMEN RESISTANCE SPECIMEN 75.737 2.4876-003	100.00 TEMPERATE	248.76 0.00 URE
1SOTHERMAL RESISTIVITY DATA FOR TI A110-AT 24 JULY 67 4620.48 629.40 25.00 1.00 3.00 REFERENCE TEMPERATURE SPECIMEN RESISTANCE SPECIMEN 75.737 2.4876-003	100.00 TEMPERATE	
1SOTHERMAL RESISTIVITY DATA FOR TI A110-AT 27 SEPT 67 25463.30 634.00 23.00 1.00 5.00 REFERENCE TEMPERATURE SPECIMEN RESISTANCE SPECIMEN 273.063 2.8645-003 2	100.00 TEMPERATE	

Table 5 Transport property data for At 7039

THERMAL CONDUCTIVITY DATA ON AL 7039 19 OCT 67 110 PM 659151 6.7800 -0.00 652.8 23.0 -0.0 59.87 72.80 85.26 97.04 107.92 118.48 -1.21 200.00 57.91 THERMOCOUPLE TEMPERATURES	128.58	
8.221 9.063 9.843 10.563 11.240 11.873 HEATER POWER REFERENCE TEMPERATURE SPECIMEN RESISTANCE 4.4690-003 4.052 2.8955-004	12.469	13.039
THERMAL CONDUCTIVITY DATA ON AL 7039 19 OCT 67 430 PM		
847702 8.7200 -0.00 652.9 24.0 -0.0	1.0	201/0
101.61 118.85 135.35 150.88 165.28 179.11 -2.39 200.00 57.93	192.51	204.60
THERMOCOUPLE TEMPERATURES		
10.839 11.895 12.877 13.788 14.647 15.451	16.212	16 940
HEATER POWER REFERENCE TEMPERATURE SPECIMEN RESISTANCE	1012.12	10.740
7.3920-003 4.052 2.8965-004		
THERMAL CONDUCTIVITY DATA ON AL 7039 19 OCT 67 630 PM		
1430128 14.7080 -0.00 652.7 24.0 -0.0	1.0	
1430128 14.7080 -0.00 652.7 24.0 -0.0 202.27 235.10 265.53 293.55 319.38 343.65	366.59	388.09
-9.26 200.00 58.08		
THERMOCOUPLE TEMPERATURES		
16.787 18.704 20.467 22.088 23.608 25.024	26.363	27.644
HEATER POWER REFERENCE TEMPERATURE SPECIMEN RESISTANCE		
2.1034-002 4.052 2.9040-004		
THERMAL CONDUCTIVITY DATA ON AL 7039 19 OCT 67 730 PM		
291816 3.0000 -0.00 652.7 24.0 -0.0	1.0	
16.26 19.74 23.40 27.01 30.21 53.59	36.92	39.83
-0.22 200.00 57.90		
THERMOCOUPLE TEMPERATURES		
5.216 5.488 5.751 6.000 6.243 6.474	6.695	6.910
HEATER POWER REFERENCE TEMPERATURE SPECIMEN RESISTANCE		
8.7545-004 4.052 2.8950-004		

THERMAL CONDUCTIVITY DATA ON AL 7039 20 OCT 67 1200 NOON 432635 4.4500 110.59 652.4 23.0 1. 34.98 37.21 39.75 42.33 44.58 47.0 -0.90 200.00 58.06 THERMOCOUPLE TEMPERATURES	2.0 2 49.53 51.69
21.876 22.017 22.162 22.306 22.448 22.58 HEATER POWER REFERENCE TEMPERATURE SPECIMEN RESISTANCE 1.9252-003 19.867 2.9030-004	
THERMAL CONDUCTIVITY DATA ON AL 7039 20 OCT 67 215 PM 1227660 12.6240 110.63 652.6 24.0 1. 77.92 94.96 111.85 128.14 143.69 158.8	
-7.60 200.00 58.26 THERMOCOUPLE TEMPERATURES 24.415 25.425 26.414 27.368 28.297 29.18 HEATER POWER REFERENCE TEMPERATURE SPECIMEN RESISTANCE	
1.5498-002 19.900 2.9130-004 THERMAL CONDUCTIVITY DATA ON AL 7039 20 OCT 67 400 PM	Λ 2 Λ
2585005 26.5500 112.99 652.8 24.0 1. 210.08 265.90 318.53 367.82 414.54 459.2 -35.54 200.00 59.76 THERMOCOUPLE TEMPERATURES	23 502.52 544.15
32.388 35.738 38.892 41.845 44.649 47.30 HEATER POWER REFERENCE TEMPERATURE SPECIMEN RESISTANCE 6.8630-002 20.057 2.9880-004	
THERMAL CONDUCTIVITY DATA ON AL 7039 20 OCT 67 535 PM 3413800 35.0120 116.55 652.8 24.0 1. 436.70 510.87 582.89 652.19 719.19 784.5 -58.61 200.00 63.24	.0 2.0 54 848.46 911.13
THERMOCOUPLE TEMPERATURES 46.176 50.574 54.784 58.790 62.638 66.34 HEATER POWER REFERENCE TEMPERATURE SPECIMEN RESISTANCE 1.1951-001 20.274 3.1620-004	
	10 to 50 to 50 to

THERMAL CONDUCTIVITY DATA ON AL 7039 11 OCT 67 750PM 3023685 30.9578 4670.10 650.9 23.0 1.0 135.75 182.05 228.64 274.73 320.76 366.43 -39.58 100.00 36.67 THERMOCOUPLE TEMPERATURES	3.0 411.53	456.63
83.595 86.095 88.597 91.057 93.503 95.916 HEATER POWER REFERENCE TEMPERATURE SPECIMEN RESISTANCE 9.3551-002 76.189 3.6670-004	98.292	100.653
THERMAL CONDUCTIVITY DATA ON AL 7039 12 OCT 67 1040AM 4754550 48.5594 4625.10 604.3 24.0 1.0 357.32 467.17 577.23 685.38 792.80 898.43 -89.45 100.00 41.06 THERMOCOUPLE TEMPERATURES	3.0 1002.90	1106.72
95.045 100.817 106.538 112.102 117.581 122.921 HEATER POWER REFERENCE TEMPERATURE SPECIMEN RESISTANCE 2.3056-001 75.780 4.1060-004	128.167	133.338
THERMAL CONDUCTIVITY DATA ON AL 7039 12 OCT 67 412PM 5754040 58.6352 4667.00 604.8 25.0 1.0 817.35 968.52 1119.99 1267.94 1414.54 1558.47 -118.78 100.00 47.32 THERMOCOUPLE TEMPERATURES	3.0 1700.64	1842.04
119.177 126.793 134.342 141.643 148.815 155.796 HEATER POWER REFERENCE TEMPERATURE SPECIMEN RESISTANCE 3.3622-001 76.161 4.7320-004	162.642	169.401
THERMAL CONDUCTIVITY DATA ON AL 7039 12 OCT 67 830PM 5755500 58.6493 4668.40 603.0 23.0 1.0 816.99 968.16 1119.56 1267.56 1414.12 1558.23 -118.82 100.00 47.32 THERMOCOUPLE TEMPERATURES	3.0 1700.54	1842.09
119.171 126.786 134.332 141.636 148.806 155.796 HEATER POWER REFERENCE TEMPERATURE SPECIMEN RESISTANCE 3.3638-001 76.174 4.7320-004	162.649	169.414

THERMAL CONDUCTIVITY DATA ON AL 7039 13 OCT 67 905 AM 6752460 68.6454 4710.60 603.722000000.0 1.0 1384.10 1577.90 1771.80 1960.40 2146.94 2330.16 -150.81 100.00 54.52 THERMOCOUPLE TEMPERATURES		2691.70
147.683 157.085 166.395 175.367 184.175 192.759 HEATER POWER REFERENCE TEMPERATURE SPECIMEN RESISTANCE 4.5974-001 76.558 5.4520-904	201.199	209.546
THERMAL CONDUCTIVITY DATA ON AL 7039 13 OCT 67 930 PM 2905375 29.7700 3295.25 95.3 23.0 1.0 139.78 184.44 229.41 273.85 318.05 361.73	3.0 404.75	448 03
-38.71 100.00 34.48 THERMOCOUPLE TEMPERATURES 71.390 73.871 76.354 78.792 81.205 83.574		
HEATER POWER REFERENCE TEMPERATURE SPECIMEN RESISTANCE 8.6464-002 63.530 3.4480-004	65.696	88,223
THERMAL CONDUCTIVITY DATA ON AL 7039 23 OCT 67 625 PM		
2949870 30.0000 17180.20 624.5 24.0 1.0 105.40 139.67 174.05 208.03 242.01 275.78 -27.79 200.00 118.70 THERMOCOUPLE TEMPERATURES	4.0 309.79	343.78
197.393 198.987 200.585 202.162 203.738 205.302 HEATER POWER REFERENCE TEMPERATURE SPECIMEN RESISTANCE 8.7219-002 192.477 5.9350-004	206.875	208.446
THERMAL CONDUCTIVITY DATA ON AL 7039 24 OCT 67 1112 AM 4429620 45.0000 17174.00 631.6 22.0 1.0 206.10 282.00 357.83 432.70 507.28 581.30 -61.62 200.00 123.46 THERMOCOUPLE TEMPERATURES	4.0 655.66	729.80
202.014 205.531 209.036 212.489 215.921 219.319 HEATER POWER REFERENCE TEMPERATURE SPECIMEN RESISTANCE 1.9582-001 192.417 6.1730-004	222.726	226.117

THERMAL CON	DUCTIVITY	DATA ON AL	7039 25	OCT 67 120	PM		
3952180	40.0000	25429.00	625.4	22.0	1.0	5.0	
160.47	211.74	263.11	313.96	364.79	415.27	466.27	517.36
-46.23	100.00	76.75					
THERMOCOUPLI	E TEMPERA	TURES					
279.907	282.196	284.490	286.760	289.030	291.283	293.560	295.841
HEATER PONE	R REFER	ENCE TEMPER	ATURE SI	PECIMEN RES	SISTANCE		
1.4885-001		272.725		7.6750-	004		
THERMAL CON	DUCTIVITY	DATA ON AL	7039 27 (OCT 67 215	PM		
3953010	40.0000	25482.60	626.4	22.0	1.0	5.0	
157.03	211.33	266.30	321.00	375.72	429.84	484.25	538.77
-49.61	200.00	153.73					
THERMOCOUPLE	TEMPERA	TURES					
280.280	282.704	285.159	287.601	290.044	292.460	294.889	297.324
HEATER POWER		ENCE TEMPER	ATURE ST	PECIMEN RES	SISTANCE		
1.5812-001		273.253		7.6865-			

Table 6 Isothermal electrical resistivity data for At 7039

1SOTHERMAL RESISTIVITY 4657.40 650.90 REFERENCE TEMPERATURE 76.074	DATA FOR AL-7039 110CT67 230PM 24.00 1.00 3.00 100.00 33.83 SPECIMEN RESISTANCE SPECIMEN TEMPERATURE 3.3830-004 76.074	0.00
-0.00 652.60	DATA FOR AL-7039 190CT67 1245PM 23.00 -0.00 1.00 200.00 57.90 SPECIMEN RESISTANCE SPECIMEN TEMPERATURE 2.8950-004 4.052	0.00
	DATA FOR AL-7039 200CT67 1055AM 23.00 1.00 2.00 200.00 57.99 SPECIMEN RESISTANCE SPECIMEN TEMPERATURE 2.8995-004 20.284	0.00

Table 7 Transport property data for Inconel 718

THERMAL COND	UCTIVITY	DATA ON IN	CONEL 718	27 DEC 67	645 PM		
1157435 210.21	11.6400	-0.00	642.7	25.0	-0.0	1.0	
210.21	257.31	262.58	286.04	507.76	528.64	348.55	367.36
-0.22	100.00	191.82					
THERMOCOUPLE							
17.237						25.292	26.411
HEATER POHER	REFERE	NCE TEMPER	ATURE SP	ECIMEN RES	ISTANCE		
1.3473-002		4.057		1.9182-0	05		
THERMAL COND	LCTIVITY	DATA ON IN	CONFL 710	27 DEC 67	OEA DM		
		-0.00					
154087	1.5650	154 00	166.04	100.50	104 04	205 75	219 61
118.89	155.96	151.98	166.94	180.69	194.04	206.75	218.61
0.55	100.00	192.00					
THERMOCOUPLE							10 743
						17.040	17.742
HEATER POMER							
5.7197-003		4.036		1.9200-0	05		
THERMAL COND	UCTIVITY	DATA ON IN	CONEL 718	27 DEC 67	1045 PM		
319338	5.2110	-0.00	642.4	23.0	-0.0	1.0	
34.82	40.51	46.10	51.48	56.26	61.17	1.0 65.93	70.16
0.25	100.00	192.36					
THERMOCOUPLE							
6.531			7.661	7,991	8.306	8.604	8.889
HEATER POWER							0.007
1.0254-003							
THERMAL COND	IKTIVITY	DATA ON IN	CONFL 718	27 DEC 67	1110 PM		
						1.0	
34.87	40.58	46.19	51.59	56.58	61.31	66.07	70.31
0.25	100.00	192.36	51.55	50.50	01.01	00	
THERMOCOUPLE							
6.535			7 669	7 999	8 315	8.613	8 899
HEATER POWER						0.013	0.077
1.0241-005				1.9236-0			
1.02+1-005		4.050		1.92.50-0	V.J		

THERMAL COND	UCTIVITY	DATA ON IN	CONEL 718	27 DEC 67	1136 PM		
318602	5.2036	-0.00	642.0	23.0	-0.0	1.0	70.53
54.96	40.70	46.33	51.75	56.57	61.51	66.28	70.53
0.25	100.00	192.36					
THERMOCOUPLE	TEMPERAT	URES					
6.540	6.949	7.526	7.679	8.011	8.527	8.626	8.912
HEATER PONER							
1.0207-005		4.056		1.9256-0	05		
THERMAL COND	UCTIVITY	DATA ON IN	CONEL 718	27 DEC 67	1210 PM		
317448				25.0		1.0	
	40.95	46.56	51.98	56.80	61.75	66.49	70.75
	100.00						
THERMOCOUPLE							
			7.696	8.028	8.344	8.641	8.929
HEATER POHER							
1.0155-005		4.039		1.9256-0			
THERMAL COND		DATA ON IN				1.0	
35.70	41.40	47.00	52.30	57.18	62.09	. 82	71.07
0.25	100.00	192.36	52.55	0.110	02.11		
THERMOCOUPLE							
6.594			7.725	8.053	8.367	8.663	8.949
HEATER POWER	REFERE	NCE TEMPER	ATURE SPI	ECIMEN RES	ISTANCE		
1.0025-003							
THERMAL COND	UCTIVITY	DATA ON IN	CONEL 718	28 DEC 67	555 PM		
762664	7.6700	110.78	655.0	22.0	1.0	2.0	
52.14	61.15	70.26	79.16	87.59	96.09	104.52	112.47
-0.55	100.00	191.77					
THERMOCOUPLE	TEMPERAT	URES					
		25.952	24.467	24.972	25.467	25.955	26.435
HEATER POWER							
5.8496-003		19.877		1.9177-0			

THERMAL CON	MICTIVITY	DATA ON IN	CONEL 718	28 DEC 67	RAS PM		
		112.41				2.0	
212 04	247 07	280.26	K11 00	342 27	371 00	100 06	429.07
			311.96	342.21	3/1.99	400.96	429.01
		191.81					
THERMOCOUPLE			***	40 000	45 444		15 151
						45.764	45.454
HEATER POMER			ATURE SP				
3.0900-002		19.996		1.9181-0	05		
THERMAL CON	OUCTIVITY	DATA ON IN	CONEL 718	29 DEC 67	1215 PM		
1150500	11 7500	112 00	CE4 7	22 A	1 0	2.0	
105.14	123.68	141.94	159 50	176.29	192.82	209.05	224.57
-1 20	100 00	191.76	155.50	110123	152.02	200.00	227.01
THERMOCOUPLE							
			20 888	50 541	31 321	\$2 20A	33.219
HEATER POMER						32.200	33.219
1.3732-002		20.009		1.9176-0	V5		
THERMAL CON	UCTIVITY	DATA ON IN	CONEL 718	29 DEC 67	320 PM		
2708380	27.1700	114.82	656.5	22.0	1.0	2.0	
393.07	458.92	522.85	584.21	645.35	701.44	758.50	814.53
-6.81	100.00	192.24					
THERMOCOUPLE							
		51.184	54.765	58.201	61.533	64.773	67.947
HEATER POWER						040	01.711
LIPTON I PALLE I CALIFFIL		20.184	nione or				
7.3587-002					• •		
7.3587-002							
THERMAL CONC	OUCTIVITY	DATA ON IN	CONEL 718	22 DEC 67	1145 AM		
THERMAL CONC	OUCTIVITY	DATA ON IN	CONEL 718	22 DEC 67	1145 AM	3.0	451.00
THERMAL CONC	OUCTIVITY	DATA ON IN	CONEL 718	22 DEC 67	1145 AM	3.0	451.80
THERMAL CONE 1992255 258.27 -0.93	0UCTIVITY 19.9450 285.86 100.00	DATA ON IN 4414.47 513.96 193.96	CONEL 718	22 DEC 67	1145 AM	3.0	451.80
THERMAL CONE 1992255 258.27 -0.93 THERMOCOUPLE	0UCTIVITY 19.9450 285.86 100.00 TEMPERAT	DATA ON IN 4414.47 313.96 193.96 TURES	474.6 341.68	22 DEC 67 22.0 569.25	1145 AM 1.0 396.78		
THERMAL CONE 1992255 258.27 -0.93 THERMOCOUPLE 87.925	19.9450 285.86 100.00 TEMPERAT	DATA ON IN 4414.47 313.96 193.96 TURES 90.901	CONEL 718 474.6 541.68	22 DEC 67 22.0 569.25	1145 AM 1.0 396.78		451.80 98.190
THERMAL CONE 1992255 258.27 -0.93 THERMOCOUPLE	19.9450 285.86 100.00 TEMPERAT 89.401	DATA ON IN 4414.47 313.96 193.96 TURES 90.901 ENCE TEMPER	CONEL 718 474.6 541.68	22 DEC 67 22.0 369.23 93.836 ECIMEN RES	1145 AM 1.0 396.78 95.292		

THERMAL CON	DICTIVITY	DATA ON I	NCONEL 718	22 DEC 67	545 PM		
		4700.64				3.0	
424.99	508 05	591 84	674 28	756.29	857.79	918 99	1000.15
0.12	100.00	195.09	014.20	100.25	051.15	510.55	1000.15
THERMOCOUPL							
			112.175	116.359	120.491	124.586	128.652
HEATER PONE	R REFER	ENCE TEMPE	RATINE ST	PECIMEN RE	SISTANCE	1211000	
1.2252-001			in the Di	1.9509-			
THERMAL CON	DUCTIVITY	DATA ON I	NCONEL 718	25 DEC 67	1215 PM		
6027530	59.8000	4750.95	646.2	23.0	1.0	3.0	
1067.98	1297.93	1528.55	1755.95	1976.71	2196.45	2414.15	2630.36
14.62	100.00	198.22					
THERMOCOUPL							
132.448	145.797	155.025	165.858	176.456	186.811	196.990	207.020
HEATER PONE							
3.6005-001							
THERMAL CON	DUCTIVITY	DATA ON I	NCONEL 718	24 DEC 67	400 PM		
2065525	20.7000	3267.11	92.7	22.0	1.0	3.0	
157.10	168.52	200.21	231.44	262.48	293.36	324.13	354.87
-2.16	100.00	195.07					
THERMOCOUPL							
						81.281	82.949
HEATER POME							
4.2756-002		63.264		1.9307-	005		
TUEDHAL COL	DUCTIVITY	DATA ON I	NCANEL 710	Z IAN CO	730 DM		
THERMAL CON						4.0	
3186880	51.6000	1/1/8.00	020.6	E14 01	1.0	CEA 47	688.07
283.12	100 00	200.54	457.16	514.91	5/2.40	630.17	000.07
THERMOCOUPL 205.648				216 800	210 040	221 507	224.247
HEATER POME						221.591	224.241
1.0071-001				2.0054-			
1.00/1-001		192.436		2.0054-	003		

	THERMAL CON	DUCTIVITY	DATA ON	INCONEL 718	4 JAN 67	140 PM		
	6346150	62.6000	17245.00	626.0	22.0	1.0	4.0	
	692.50	911.40	1131.80	1347.60	1561.20	1771.50	1980.80	2188.30
	24.70	100.00	202.90					
	THERMOCOUPLE	TEMPERA	TURES					
	225.078	235.057	245.056	254.802	264.409	273.845	283.201	292.465
-	HEATER PONE	REFER	ENCE TEMP	ERATURE ST	PECIMEN RE	SISTANCE		
	3.9727-001		193.098		2.0290-	-003		

Table 8 Isothermal electrical resistivity data for Inconel 718

-0.00 655.00	TY DATA FOR INCONEL 718 22.00 -0.00 E SPECIMEN RESISTANCE 1.9266-003	1.00 100.00 192.66	0.00
110.22 655.60	TY DATA FOR INCOMEL 718 22.50 1.00 E SPECIMEN RESISTANCE 1.9186-003	2.00 100.00 191.86	0.00
4395.02 476.80	TY DATA FOR INCOMEL 718 22.00 1.00 E SPECIMEN RESISTANCE 1.9302-003	5.00 100.00 195.02	0.00

Table 9 Transport property data for Hastelloy X

60.53 69.8	79.00 193.37	87.71	95.67	103.60	1.0	118.44
THERMOCOUPLE TEMPE 8.263 8.87 HEATER POWER REF 2.9211-003	RATURES 4 9.451 ERENCE TEMPERA 4.051	TURE SPI		3 ANCE	11.431	11.875
123.56 141.0	19 157.84 10 193.18	173.70	188.40	202.68		229.45
THERMOCOUPLE TEMPE 12.164 13.21 HEATER POWER REF 7.5689-003	FERENCE TEMPERA 4.052	TURE ST	1.9318-0	03	17.614	18.382
THERMAL CONDUCTIV 1288825 12.96 217.10 245. -3.54 100.	38 272.15 00 193.13	297.33	320.81	343.42	1.0 365.25	
THERMOCOUPLE TEMP 17.648 19.3 HEATER POWER RE 1.6703-002	ERATURES 00 20.851 FERENCE TEMPER 4.052	-	1.9313-	003	. m. m. to	27.520
27.08 32. -0.12 100	.04 37.23 .00 193.55	42.14	X 24 JAN 6 23.0 46.46	8 1145 PM -0.0 50.90	1.0 55.33	59.22
THERMOCOUPLE TEM 6.006 6. HEATER POWER R 1.1907-003	PERATURES	7 157	7.360 SPECIMEN RE 1.9355-	7.650 SISTANCE -003	7.933	8.202

THERMAL CONDUCTIV	ITY DATA FOR H	ASTELLOY X	25 JAN 68	200 PM		
909950 9.15 74.29 85.	00 111.05	651.8	24.0	1.0	2.0	140 77
74.29 85.	41 96.64	107.59	118.04	128,52	138.89	148.76
-2.06 100.	00 193.14					
THERMOCOUPLE TEMP	ERATURES					
24.194 24.8	57 25.512	26.150	26.776	27.390	27.995	28.591
HEATER POWER RE	FERENCE TEMPER	ATURE SF	ECIMEN RES	ISTANCE		
8.3260-003	19.892		1.9314-0	03		
THERMAL CONDUCTIV	ITY DATA FOR H	ASTELLOY)	25 JAN 68	400 PM		
1010540 18 27	00 112.12	651.8	24.0	1.0	2.0	
1818540 18.27 204.48 240.	13 275 40	300 18	341.50	373.13	404.26	434.57
-9.63 100.	00 103 30	505.10	541.50	0.0.10		
-9.65 100.	CDATURES					
THERMOCOUPLE TEMP 31.975 34.1	ENATURES	80 3AE	40 108	42 442	43 946	45 765
51.975 54.1	54 56.23V	38.240	CCIMEN DEC	TETANCE	45.540	43.103
HEATER POWER RE	PERENCE TEMPER	CATURE ST	1.9338-0	13 MILE		
3.3225-002	19.981		1.9558-0	V5		
THERMAL CONDUCTIV	ITY DATA FOR H	ASTELLOY)	25 JAN 68	600 PM		
2000000 20 00	00 113 00	C51 0	25 0	1 0	2.0	
465.02 537. -22.44 100.	98 610.00	679.90	747.83	815.01	881.44	947.27
-22.44 100.	00 194.14					
THERMOCOUPLE TEMP	FRATURES					
47.687 51.9	98 56.193	60.217	64.104	67.895	71.604	75.266
HEATER POWER RE	FERENCE TEMPER	RATURE ST	PECIMEN RES	ISTANCE		
8.4351-002	20.108		1.9414-0	03		
THERMAL CONDUCTIV	ITY DATA FOR I	ASTELLOY)	X 26 JAN 68	1110 AM		
CEEROE C 30	110 60	652 3	22.0	1.0	2.0	
31.35 37. -0.92 100.	26 43.31	49.34	54.97	60.76	66.58	71.97
-0.03 100	00 193 12	40.04				
THERMOCOUPLE TEMP	EDATURES					
21.760 22.1	16 22 465	22 810	23, 150	23.485	23.817	24.145
HEATER POWER RE	CEDENCE TEMPE	DATURE S	PECIMEN PEG	SISTANCE		
A OCOL OOF	19.962	ATONE SI	1.9312-0	005		
4.0601-003	19.962		1.9512	100		

THERMAL CONDUCTIVITY DATA	FOR HASTELLOY	X 26 JAN 68 1	1230 PM		
1341010 13.4800 11	1.52 652.3	22.0	1.0	2.0	
121.94 144.03 16	5.82 186.82	206.94	226.67	246.12	264.84
-4.94 100.00 19					
THERMOCOUPLE TEMPERATURES					
27.142 28.458 29		32 106	33 371	34 526	35.660
HEATER POWER REFERENCE				34.320	33.000
	.039	1.9321-00			
1.8077-002 20	.039	1.9521-00	9		
THERMAL CONDUCTIVITY DATA	COD HACTELLOV	V 40 IAN 50	SAC NOON		
THERMAL CONDUCTIVITY DATA	A TE HASTELLUT	X 18 JAN 68	1200 NOCH	7 ^	
2097820 21.0200 325 145.31 179.48 21	4.75 92.0	25.0	1.0	5.0	202 00
145.31 179.48 21.	5.95 248.05	281.95	515.67	549.29	383.00
-10.55 100.00 19	4.78				
THERMOCOUPLE TEMPERATURES					
71.321 73.221 75				82.535	84.359
HEATER POWER REFERENCE	TEMPERATURE ST	PECIMEN RESI	STANCE		
4.4096-002 63	.145	1.9478-00	5		
THERMAL CONDUCTIVITY DATA	FOR HASTELLOY	X 19 JAN 68	400 PM		
2386145 23.8800 418	9.58 364.2	23.0	1.0	3.0	
2386145 23.8800 4189 223.22 266.17 309	9.56 352.41	395.06	437.48	479.80	522.22
-12.04 100.00 19	5.41				
THERMOCOUPLE TEMPERATURES					
84.042 86.359 88		03 243	95 486	97 717	99 940
HEATER POWER REFERENCE				57.71	77.750
5.6981-002 71	.804	1.9541-00.	3		
THERMAL CONDUCTIVITY DATA	FOR HACTELLOV	V DO IAN ED	EAA PM		
ZOODEAN ZO SOOM ACC	OR HADIELLUT	20 DAN 66	1 0	2 0	
5999540 59.8800 468	9.08 650.4	25.0	1.0	1170.57	1300 00
3999540 39.8800 466 490.63 606.73 72 -27.40 100.00 19	5.55 858.56	952.79	1065.97	11/8.5/	1290.98
-27.40 100.00 19	6.84				
THERMOCOUPLE TEMPERATURES					
102.592 108.606 114				137.422	142.953
HEATER POWER REFERENCE					
1.5950-001 76	.362	1.9684-00	3		

THERMAL CONDUCTIVITY DATA FOR HAS' 5595670 55.5000 4762.00 1275.33 1488.15 1702.54 19 -39.52 100.00 199.35 THERMOCOUPLE TEMPERATURES	CE1 A	28 0 1 6	3.0 5 2525.03	2725.46
142.778 153.156 163.487 1		EN RESISTANCE	202.228	211.495
THERMAL CONDUCTIVITY DATA FOR HAS 5595670 55.5000 4725.10 1282.32 1495.20 1709.60 19 -39.52 100.00 199.34 THERMOCOUPLE TEMPERATURES	650.8	22.0 1.0	3.0	2732.70
142.822 153.202 163.533 1		EN RESISTANCE	202.278	211.548
THERMAL CONDUCTIVITY DATA FOR HAS 3050850 30.2500 17255.60 229.41 286.68 345.13 -9.94 100.00 200.90 THERMOCOUPLE TEMPERATURES				633.74
203.871 206.522 209.223 20 HEATER POWER REFERENCE TEMPERATE 9.2288-002 193.200	URE SPECIM		219.837	222.490
THERMAL CONDUCTIVITY DATA FOR HAS' 6294900 62.0000 17401.80 1188.56 1410.88 1636.09 16 -33.48 100.00 203.84 THERMOCOUPLE TEMPERATURES	629.4	22.0 1.0	4.0	2709.88
249.080 259.102 269.216 21 HEATER POWER REFERENCE TEMPERATE	URE SPECIME		307.777	317.191

Table 10 Isothermal electrical resistivity data for Hastelloy X

1SOTHERMAL RESISTIVITY 4647.80 642.60 REFERENCE TEMPERATURE 75.986	23.00 1.00	3.00 100.00 194.68	0.00
1SOTHERMAL RESISTIVITY -0.00 651.90 REFERENCE TEMPERATURE 4.051	23.00 -0.00	1.00 100.00 193.82	0.00
ISCTHERMAL RESISTIVITY 110.37 651.80 REFERENCE TEMPERATURE 20.246	24.00 1.00	2.00 100.00 193.13	0.00

Table 11 Transport property data for Be

THERMAL CONDUCTIVITY DATA FOR BE	22 MAF. 68 11	55AM		
E	6.51 (1	22.0	3.0	
669.30 846.85 1028.07	1209.96 139	6.47 1585.76	1781.45	1989.70
-252.06 200.00 53.49	1200100			
THERMOCOUPLE TEMPERATURES 111.953 120.986 130.081	130 007 146	239 157.415	166.809	176.708
111.955 120.986 150.081	ATURE CRECIA	EN PESISTANCE		
HEATER POWER REFERENCE TEMPER	ATURE SPECT	6745-004		
1.0301+000 76.504	6 ·	0140-004		
THERMAL CONDUCTIVITY DATA FOR B	E 22 MAR 68 43	50PM		
			5.0	25.40 /2
12805000 129.9400 4725.70 1123.41 1418.70 1730.30	2053.73 239	95.06 2752.99	3133.99	3549.63
-337.16 100.00 39.74				
THERMOCOUPLE TEMPERATURES				
134.992 149.491 164.529	170 800 195	5.906 212.487	229.945	248.806
HEATER POWER REFERENCE TEMPER	ATURE SPECIA	MEN RESISTANCE		
	ATOME STEET	.9740-004		
1.6639+000 76.695				
THERMAL CONDUCTIVITY DATA FOR B	E 22 MAR 68 1	030PM		
12005000 120 0000 4728 40	641.2	22.0 1.0	3.0	
1121.24 1414.14 1722.95	2043.24 23	81.44 2736.10	3113.96	3525.81
-335.25 200.00 79.12				
THERMOCOUPLE TEMPERATURES				
134.907 149.291 164.199	179.425 19	5.291 211.729	229.052	247.750
HEATER POWER REFERENCE TEMPER	ATURE SPECT	MEN RESISTANCE		
1.6639+000 76.720	3	.9560-004		
		270 CM	AN WA WA	
THERMAL CONDUCTIVITY DATA FOR E			z 0	
1946455 20.0000 3266.32	94.6	22.0	3.0	03 51
32.00 40.77 49.65	58.45	67.25 /5.94	84.56	73.31
-14.94 200.00 55.42				
THE THE PARTIES OF THE PERTURE				/0 537
25 062 65 559 66.061	66.555 6	7.052 67.540	68.025	68.527
HEATER POWER REFERENCE TEMPER	RATURE SPECI	MEN RESISTANCE		
3.8929-002 63.252	1	.7710-004		
5.0525 002			a and they dree	

THERMAL CONDUCTIVITY DATA FOR BE 23 MAR 68 630 PM 3067490 31.5000 3274.12 94.4 22.0 1.0 97.10 117.86 138.79 159.34 179.80 199.87 -35.70 200.00 35.80 THERMOCOUPLE TEMPERATURES 68.804 69.967 71.135 72.278 73.414 74.524 HEATER POWER REFERENCE TEMPERATURE SPECIMEN RESISTANCE 9.6626-002 63.326 1.7900-004	219.78	240.30 76.753
THERMAL CONDUCTIVITY DATA FOR BE 23 MAR 68 1115 PM 4034410 41.4000 3256.20 94.4 23.0 1.0 199.86 233.72 267.76 301.03 334.06 366.37 -58.54 200.00 36.50 THERMOCOUPLE TEMPERATURES 74.362 76.232 78.102 79.920 81.720 83.472		
HEATER POWER REFERENCE TEMPERATURE SPECIMEN RESISTANCE 1.6702-001 63.159 1.8250-004 THERMAL CONDUCTIVITY DATA FOR BE 24 MAR 68 450PM 2923615 30.0000 4644.13 629.8 22.0 1.0 127.50 144.18 161.15 177.85 194.57 211.09 -29.63 200.00 37.06	 3.0 227.54	244.62
THERMOCOUPLE TEMPERATURES 82.916 83.820 84.737 85.636 86.537 87.423 HEATER POWER REFERENCE TEMPERATURE SPECIMEN RESISTANCE 8.7708-002 75.953 1.8530-004 THERMAL CONDUCTIVITY DATA FOR BE 25 MAR 68 120 PM		89.220
4731310 48.5000 4674.96 649.0 23.0 1.0 170.69 213.53 256.55 298.77 340.93 382.34 -74.02 200.00 38.13 THERMOCOUPLE TEMPERATURES		
85.526 87.830 90.132 92.378 94.614 96.797 HEATER POWER REFERENCE TEMPERATURE SPECIMEN RESISTANCE 2.2947-001 76.233 1.9065-004	98.967	101.195

THERMAL COND	UCTIVITY	DATA FOR I	BE 25 MAR	68 515 PM			
5655760					1.0	3.0	
432.86	490 30	548 60	606 00	663 50	720 40	777 60	836 03
-95.22	300.00	11 11	606.00	005.50	120.45	///.00	030.03
THERMOCOUPLE							100 400
						117.524	120.483
HEATER POWER							
3.2747-001		76.555		2.0720-	004		
\$40 May Not							
THERMAL COND	UCTIVITY	DATA FOR I	BE 26 MAR	68 1130 AM			
5655310	57.9000	4709.30	648.4	24.0	1.0	3.0	
5655310 452.88	490.31	548.61	605.99	663.48	720.46	777.64	837.00
-95.20	200.00	41.45					
THERMOCOUPLE							
99.751	102.750	105.777	108.739	111.693	114.605	117.518	120.524
HEATER POWER							120.52
3.2744-001							
3.2746 001		70.540		2.0125			
THERMAL COND	UCTIVITY	DATA FOR	RE 10 APR	68 350PM			
3032560	40 0500	17262 50	630 0	24 0	1 0	4.0	
3932560 214.29	247 70	202.50	315 10	350 60	305 A5	420 00	456 23
-29.25	241.19	202.12	316.16	330.62	365.05	420.00	450.25
THERMOCOUPLE				242 542			
203.236						212.741.	214.409
HEATER POWER			The state of the s	The second secon	and the control of th		
1.5750-001		193.266		4.5230-	004		
TUEDHAL COND	LICTIVITY	DATA COD !	DE 44 ADD /	CO 4470 AM		to are the	
THERMAL COND	OCTIVITY	DATA FOR E	BE 11 APR	58 1150 AM			
9867945 703.73	99.9400	1/509.80	626.0	25.0	1.0	4.0	
703.75	931.55	1170.27	1414.42	1667.40	1926.91	2197.32	2483.99
-155.65							
THERMOCOUPLE							
226.199	236.578	247.398	258.410	269.772	281.389	293.462	306.261
HEATER POWER							
9.8620-001		193.720		6.8760-	004		

	75.2500 507.57	FOR BE 11 17257.20 634.23 108.43	APR 68 54 622.0 761.97	5 PM 24.0 892.90	1.0	4.0 1162.08	1305.30
THERMOCOUPLE	216.719	TURES 222.527 ENCE TEMPER 193.215	228.365 RATURE S	234.330 PECIMEN RES 5.4215-		246.539	253.008

Table 12 Isothermal electrical resistivity data for Be

No isothermal resistivity data on Be

Table 13 Transport property data for PO-3 graphite

THERMAL CONDI	UCTIVITY	DATA FOR	GRAPHITE 20	SEPT 68	1230 PM		
		-0.00	653.2	21.0	1.0	1.0	
23.55	29.15	35.00	40.10	44.40	48.60	52.80	56.40
		512.76					
THERMOCOUPLE							
			6.912	7.219	7.495	7.764	8.016
HEATER POWER							
7.1361-005							
THERMAL COND	UCTIVITY	DATA FOR	GRAPHITE 20	SEPT 68	235 PM		
150105	1.5200	-0.00	654.0	21.0	1.0	1.0	
56.74	66.54	75.64	654.0 83.65	90.47	96.97	103.14	108.55
-6.68	10.00	511.08					
THERMOCOUPLE							
			9.737	10.174	10.570	10.938	11 281
HEATER POWER							11.201
2.2816-004							
2.2010 004		4.055					
THERMAL COND	CTIVITY	DATA FOR	GRAPHITE 20	SEPT 68	625 PM		
315975	3.2000	-0.00	654.5	21.0	1.0	1.0	
105.53	125.95	142.76	654.5 157.00	168.90	179.66	189.93	198.90
-15.59	10.00	507 75	.5	100.20			-,0.,0
THERMOCOUPLE							
11.080				14.861	15.497	16.076	16.611
HEATER POWER							
1.0111-003							
1.0111 005							
THERMAL CONDI	CTIVITY	DATA FOR	GRAPHITE 20	SEPT 68	725 PM		
691911	7.0060	-0.00	654.5	21.0	1.0	1.0	
209.51	241.46	267.20	654.5 288.94	307.17	323.92	339.03	352.77
-32.62	10.00	500.85	200.54		020112	000.00	
THERMOCOUPLE							
	The second secon	The second secon	21.823	22.898	23.872	24.748	25.567
HEATER POWER						241.40	23.301
4.8475-003			NATURE ST				
4.0475 005		4.000					

Table 13 (Cont.)

THERMAL CONDUCTIVITY DATA FOR GRAPHITE 23 SEPT 68 415 PM	
F1740F F 2444 144 70 652 6 21 4	0 20
517425 5.2400 110.70 652.6 21.0 55.65 64.84 73.80 82.30 90.05 97. -14.18 10.00 498.32	75 105.27 112.17
14.40 44.64 75.60 62.50	
-14.18 10.00 496.32	
THERMOCOUPLE TEMPERATURES	CA 35 004 37 413
25.086 23.634 24.155 24.646 25.112 25.5	25.994 26.415
HEATER POWER REFERENCE TEMPERATURE SPECIMEN RESISTANCE	
2.7113-003 19.873 4.9832-002	
The second secon	
THERMAL CONDUCTIVITY DATA FOR GRAPHITE 24 SEPT 68 1040 AM	
849462 8.6000 111.31 652.0 21.0 1	.0 2.0
849462 8.6000 111.31 652.0 21.0 1 130.60 146.18 160.93 174.62 187.13 199.	16 210.78 221.56
-24.88 10.00 492.70	
THERMOCOUPLE TEMPERATURES	
27.548 28.480 29.350 30.156 30.911 31.6	25 32.309 32.965
HEATER POWER REFERENCE TEMPERATURE SPECIMEN RESISTANCE	Ε
7.3054-003 19.937 4.9270-002	
THERMAL CONDUCTIVITY DATA FOR GRAPHITE 24 SEPT 68 240 PM	
1595080 16.1400 112.41 652.3 21.0 1	.0 2.0
1595080 16.1400 112.41 652.3 21.0 1 270.51 298.90 325.05 349.10 370.86 391.	40 411.08 429.50
-45.59 10.00 481.48	
THERMOCOUPLE TEMPERATURES	
35.970 37.685 39.252 40.690 42.006 43.2	32 44.400 45.510
HEATER POWER REFERENCE TEMPERATURE SPECIMEN RESISTANCE	F
2.5745-002 20.026 4.8148-002	-
2.5745-002 20.026 4.8148-002	
THERMAL CONDUCTIVITY DATA FOR GRAPHITE 24 SEPT 68 510 PM	
3323790 33.6000 114.14 652.5 21.0 1	.0 2.0
549.50 603.64 653.25 698.60 740.02 779.	10 916 50 852 10
549.50 605.64 655.25 698.60 740.02 779.	00.50
-77.88 10.00 459.04	
THERMOCOUPLE TEMPERATURES	70 010
52.702 55.868 58.732 61.328 63.700 65.9	08.011 70.018
HEATER POWER REFERENCE TEMPERATURE SPECIMEN RESISTAND	Ŀ
1.1168-001 20.148 4.5904-002	

THERMAL CONDUCTIVITY DATA FOR GRAPHITE 16 SEPT 68 1045 PM 2552050 25.7800 4604.60 604.5 21.0 1.0 175.80 190.48 205.27 219.62 233.80 247.76 -20.76 10.00 432.68 THERMOCOUPLE TEMPERATURES	3.0 261.63	275.56
85.175 85.966 86.762 87.531 88.292 89.038 HEATER POWER REFERENCE TEMPERATURE SPECIMEN RESISTANCE 6.5792-002 75.593 4.3268-002	89.782	90.524
THERMAL CONDUCTIVITY DATA FOR GRAPHITE 17 SEPT 68 115 PM 3505735 35.3000 4618.40 602.5 21.0 1.0 322.89 347.21 371.64 395.18 418.30 440.97 -31.56 10.00 423.41 THERMOCOUPLE TEMPERATURES	3.0 463.43	485.90
93.164 94.453 95.743 96.982 98.198 99.386 HEATER POWER REFERENCE TEMPERATURE SPECIMEN RESISTANCE 1.2410-001 75.719 4.2341-002	100.563	101.735
THERMAL CONDUCTIVITY DATA FOR GRAPHITE 18 SEPT 68 925 AM 5448170 55.0000 4645.50 603.5 21.0 1.0 721.74 766.71 812.02 855.30 897.69 939.11 -48.76 10.00 401.56 THERMOCOUPLE TEMPERATURES	3.0 980.12	1021.00
114.135 116.427 118.728 120.917 123.055 125.137 HEATER POWER REFERENCE TEMPERATURE SPECIMEN RESISTANCE 2.9965-001 75.965 4.0156-002	127.195	129.238
THERMAL CONDUCTIVITY DATA FOR GRAPHITE 18 SEPT 68 745 PM 9310900 93.7500 4675.58 605.0 21.0 1.0 1585.94 1679.36 1774.67 1865.88 1954.83 2041.95 -73.10 10.00 362.51 THERMOCOUPLE TEMPERATURES	3.0 2128.55	2214.97
157.193 161.690 166.255 170.604 174.829 178.950 HEATER POWER REFERENCE TEMPERATURE SPECIMEN RESISTANCE 8.7290-001 76.239 3.6251-002	183.036	187.096

THERMAL CONDUCTIVITY DATA FOR GRAPHITE 19 SEPT 68 1030 AM 6259280 63.1000 4700.68 617.0 21.0 1.0 1159.70 1208.34 1258.27 1305.87 1352.59 1398.50 -45.96 10.00 382.86 THERMOCOUPLE TEMPERATURES	3.0 1444.17	1489.98
136.584 138.986 141.443 143.778 146.064 148.303 HEATER POWER REFERENCE TEMPERATURE SPECIMEN RESISTANCE 3.9496-001 76.467 3.8286-002	150.528	152.751
THERMAL CONDUCTIVITY DATA FOR GRAPHITE 13 SEPT 68 220 PM 5317470 53.5000 17255.50 626.3 22.0 1.0 397.97 422.77 448.85 474.00 499.22 524.20 -15.44 10.00 335.11 THERMOCOUPLE TEMPERATURES	4.0 549.46	574.94
21.660 212.802 214.003 215.160 216.319 217.467 HEATER POWER REFERENCE TEMPERATURE SPECIMEN RESISTANCE 2.8448-001 193.199 3.3511-002	ti- de la la	219.795
THERMAL CONDUCTIVITY DATA FOR GRAPHITE 13 SEPT 68 555 PM 7559785 76.0000 17309.00 626.0 22.0 1.0 756.07 804.12 854.65 903.43 952.21 1000.55 -26.15 10.00 323.52	4.0	1098.56
THERMOCOUPLE TEMPERATURES 228.581 230.772 233.074 235.293 237.510 239.704 HEATER POWER REFERENCE TEMPERATURE SPECIMEN RESISTANCE 5.7454-001 193.712 3.2352-002	241.917	244.146
THERMAL CONDUCTIVITY DATA FOR GRAPHITE 14 SEPT 68 1155 PM 11958852 120.0000 17343.20 622.3 2100000.0 1.0 1703.14 1814.45 1931.48 2045.49 2159.86 2273.80 -46.35 10.00 297.90	4.0 2389.42	2505.92
THERMOCOUPLE TEMPERATURES 271.683 276.675 281.900 286.990 292.096 297.183 HEATER POWER REFERENCE TEMPERATURE SPECIMEN RESISTANCE 1.4351+000 194.040 2.9790-002	302.346	307.547

THERMAL CONDUCTIVITY	DATA FOR GRAPHITE	15 SEPT 68 230 PM		
9856140 99.0000	17291.50 620.	4 21.0 1.0	4.0	
1136.36 1215.52	1298.54 1379.1	1 1459.43 1539.01	1619.44	1700.42
-37.79 10.00	312.22			
THERMOCOUPLE TEMPERA	TURES			
245.695 249.274	253.021 256.65	1 260.266 263.842	267.452	271.084
HEATER POWER REFER	ENCE TEMPERATURE	SPECIMEN RESISTANCE		
9.7576-001	193.544	3.1222-002		

Table 14 Isothermal electrical resistivity data for PO-3 graphite

1SOTHERMAL RESISTIVITY DATA FOR -0.00 653.00 21.00 REFERENCE TEMPERATURE SPECIME 4.053 5.1	1.00 1.00 IN RESISTANCE SPECIME	10.00 513. N TEMPERATURE	90 3.76
1SOTHERMAL RESISTIVITY DATA FOR -0.00 653.90 21.00 REFERENCE TEMPERATURE SPECIME 4.055 5.1	1.00 1.00 N RESISTANCE SPECIME	10.00 512. N TEMPERATURE	61 46.99
1SOTHERMAL RESISTIVITY DATA FOR -0.00 654.00 21.00 REFERENCE TEMPERATURE SPECIME 4.055 5.0	PO-3 GRAPHITE 20 SEPT -0.00 1.00 IN RESISTANCE SPECIME 348-002	68 920PM 10.00 503. N TEMPERATURE 19.377	48 245.660
ISOTHERMAL RESISTIVITY DATA FOR 110.19 653.10 21.00 REFERENCE TEMPERATURE SPECIME 20.237 5.0	2 PO-3 GRAPHITE 23 SEPT	68 1250PM 10.00 503.	
150THERMAL RESISTIVITY DATA FOR 110.64 652.50 21.00 REFERENCE TEMPERATURE SPECIME 20.289 5.0	1.00 2.00 IN RESISTANCE SPECIME	10.00 500. N TEMPERATURE	87 40.750
1SOTHERMAL RESISTIVITY DATA FOR 111.38 653.70 21.00 REFERENCE TEMPERATURE SPECIME 20.356 4.9	1.00 2.00 IN RESISTANCE SPECIME	10.00 497. IN TEMPERATURE	37 101.730
150THERMAL RESISTIVITY DATA FOR 112.75 652.30 21.00 REFERENCE TEMPERATURE SPECIME 20.453 4.6	DA-S CDARLITE DA SERT	ER 1240PM	.92 223.870
150THERMAL RESISTIVITY DATA FOR 114.39 653.30 21.00 REFERENCE TEMPERATURE SPECIME 20.563 4.	R PO-3 GRAPHITE 24 SEPT 1.00 2.00 EN RESISTANCE SPECIME	68 330PM 10.00 479. IN TEMPERATURE	.58 385.630

119.10 652.50 2 REFERENCE TEMPERATURE S 20.819	TA FOR PO-3 GRAPHITE 24 SEPT 1.00 1.00 2.00 PECIMEN RESISTANCE SPECIMEN 4.4450-002	68 555PM 10.00 44 N TEMPERATUR 76.539	4.50 E	958.000
1SOTHERMAL RESISTIVITY DA 4603.00 598.80 2 REFERENCE TEMPERATURE S	TA FOR PO-3 GRAPHITE 16 SEPT 1.00 1.00 3.00 PECIMEN RESISTANCE SPECIMEN 4.3992-002	68 140PM 10.00 43 N TEMPERATUR	9.92	
1SOTHERMAL RESISTIVITY DA 4617.98 604.00 2 REFERENCE TEMPERATURE S 75.715	TA FOR PO-3 GRAPHITE 17 SEPT 1.00 1.00 3.00 PECIMEN RESISTANCE SPECIMEN 4.3460-002	68 1005AM 10.00 43 N TEMPERATUR 85.940	64.60 E	187.680
1SOTHERMAL RESISTIVITY DA 4652.38 602.40 2	TA FOR PO-3 GRAPHITE 17 SEPT 1.00 1.00 3.00 PECIMEN RESISTANCE SPECIMEN 4.2238-002	68 618PM 10.00 42	2.38	
4681.75 602.50 2 REFERENCE TEMPERATURE S	TA FOR PO-3 GRAPHITE 18 SEPT 2.00 1.00 3.00 PECIMEN RESISTANCE SPECIMEN 4.0486-002	10.00 40 N TEMPERATUR	04.86 E	793.610
1SOTHERMAL RESISTIVITY DA 4831.80 652.30 2 REFERENCE TEMPERATURE S 77.659	TA FOR PO-3 GRAPHITE 19 SEPT 1.00 1.00 3.00 PECIMEN RESISTANCE SPECIMEN 3.5022-002	68 235PM 10.00 35 N TEMPERATUR 190.777	50.22 E	2267.580
ISOTHERMAL RESISTIVITY DA	TA FOR PO-3 GRAPHITE 12 SEPT 2.00 1.00 4.00 PECIMEN RESISTANCE SPECIMEN 3.4440-002	68 545PM		160.900
150THERMAL RESISTIVITY DA 17362.20 622.00 2 REFERENCE TEMPERATURE S	TA FOR PO-3 GRAPHITE 14 SEPT 2.00 1.00 4.00 PECIMEN RESISTANCE SPECIMEN 3.2377-002 2	68 515PM 10.00 32 N TEMPERATUR	23.77	906.760

Table 15 Parameters in equations 22, 23, and 24 for Ti Allo-AT

	COEFFICIENTS FOR	
THERMAL	ELECTRICAL	
CONDUCTIVITY	RESISTIVITY	THERMOPOWER
-5.06395097+000	7.89252702-007	-1.58121391+001
6.88712311+000	1.49763681-006	3.79180055+001
-3.90357743+000	-1.59177332-006	-8.41032221+001
1.19805789+000	8.96843641-007	9.74696929+001
-2.09020637-001	-2.88887717-007	-1.12974481+002
1.95307646-002	5.30624488-008	6.18987000+001
-7.59426352-004	-5.14188674-009	-1.54216675+001
	2.04423026-010	1.35460142+000

Table 16 Parameters in equations 22, 23, and 24 for At 7039

```
COEFFICIENTS FOR
                    ELECTRICAL
    THERMAL
                    RESISTIVITY
  CONDUCTIVITY
                                     THERMOPOWER
 2.29632521+000 1.28748725-007 1.71060776+001
-1.54727504+000 -3.27608149-007 -1.33360752+002
4.00341352-001 4.07400149-007 5.11404848+002
 2.88936392-003 -2.79922547-007 -3.37068033+002
-2.15351278-002 1.16239500-007
                                    1.57586179+002
 3.88045930-003 -2.98620355-008 -3.31898139+001
-2.18079207-004 4.63166504-009
                                    2.49163872+000
                  -3.96374984-010
                   1.43605591-011
```

Table 17 Parameters in equations 22, 23, and 24 for Inconel 718

	OEFFICIENTS FOR	
THERMAL	ELECTRICAL	
CONDUCTIVITY	RESISTIVITY	THERMOPOWER
-5.46241719+000	1.12285087-006	5.48360101+001
7.39689278+000	-7.83810447-008	-3.01984465+002
-4.16174867+000	5.63890447-008	6.85469757+002
1.26896416+000	-1.93288570-008	-7.68205488+002
-2.20152847-001	2.96162062-009	4.56243644+002
2.04649099-002	-1.50481839-010	-1.47829752+102
-7.91806469-004	-7.91806469-004	2.48887223.001
		-1.70855972+000

Table 18 Parameters in equations 22, 23, and 24 for Hastelloy X

(DEFFICIENTS FOR	
THERMAL	ELECTRICAL	
CONDUCTIVITY	RESISTIVITY	THERMOPOWER
-4.55464242+000	1.08125768-006	3.20187561+001
6.50507423+000	2.50203640-008	-2.06088289+002
-3.79427905+000	-2.37968596-008	4.88192143+002
1.18719162+000	1.08737546-008	-5.64341813+002
-2.09767231-001	-2.85718690-009	3.35752457+002
1.97476492-002	4.00630494-010	-1.07878568+002
-7.70496356-004	-2.06631014-011	1.79312534+001
		-1.21659772+000

Table 19 Parameters in equations 22, 23, and 24 for Be

	COEFFICIENTS FOR	
THERMAL	ELECTRICAL	
CONDUCTIVITY	RESISTIVITY	THERMOPOWER
3.50756357+001	1.04827778-006	4.66857121+004
-3.52180458+001	-1.04585223-006	-1.15546113+205
1.42593402+001	3.94919200-007	1.18186841+005
-2.87552099+000	-6.62861157-008	-6.38460382+004
2.88032662-001	4.17594395-009	1.91462052+004
-1.14639707-002	-1.14639707-002	-3.01773307+003
		1.95317862+002

Table 20 Parameters in equations 22, 23, and 24 for PO-3 graphite

	OEFFICIENTS FOR	
THERMAL	ELECTRICAL	
CONDUCTIVITY	RESISTIVITY	THERMOPOWER
-1.08785541+001	2.27082479-005	3.66835555+001
1.24349984+001	7.31276057-006	-4.37966755+002
-6.10230341+000	-5.62230018-006	1.06185640+003
1.65638992+000	2.06940741-006	-1.47174547+003
-2.59335603-001	-3.66408972-007	1.04135414+003
2.19770120-002	2.27478504-008	-3.90995198+002
-7.82412750-004	-7.82412750-004	7.47840928+001
		-5.73591731+000

Table 21 Thermal conductivity deviations of Ti Allo-AT

THERMAL COND	UCTIVITY DATA	ON TI A110AT 5	AUG 67 910 PM	
MEAN	TEMPERATURE	OBSERVED	CALCULATED	PERCENT
TEMPERATURE	DIFFERENCE	THERMAL	THERMAL.	DEVIATION
		CONDUCTIVITY	CONDUCTIVITY	
7.859	0.642	7.71-001	7.57-001	1.8
8.478	0.596	8.30-001	8.26-001	0.5
9.052	0.552	8.97-001	8.90-001	0.7
9.588	0.519	9.53-001	9.50-001	0.3
10.092	0.490	1.01+000	1.01+000	0.4
10.571	0.468	1.06+000	1.06+000	-0.1
11.029	0.448	1.10+000	1.11+000	-0.4
THERMAL COND	UCTIVITY DATA	ON TI ATTOAT 7	AUG 67 1245 PM	
MEAN	TEMPERATURE	OBSERVED	CALCULATED	PERCENT
TEMPERATURE	DIFFERENCE	THERMAL	THERMAL	DEVIATION
		CONDUCTIVITY	CONDUCTIVITY	
11.393	1.089	1.14+000	1.15+000	-0.8
12.437	0.999	1.24+000	1.26+000	-1.3
13.398	0.924	1.34+000	1.35+000	-0.9
14.294	0.867	1.43+000	1.44+000	-1.0
15.136	0.818	1.51+000	1.52+000	-0.6
15.936	0.782	1.58+000	1.60+000	-0.9
16.701	0.748	1.66+000	1.67+000	-0.7
THERMAL COND	UCTIVITY DATA	ON TI ATTOAT 7	AUG 67 215 PM	
MEAN	TEMPERATURE	OBSERVED	CALCULATED	PERCENT
TEMPERATURE	DIFFERENCE	THERMAL	THERMAL	DEVIATION
		CONDUCTIVITY	CONDUCTIVITY	
11.378	1.080	1.15+000	1.15+000	0.1
12.414	0.992	1.25+000	1.25+000	-0.5
13.369	0.918	1.35+000	1.35+000	-0.1
14.259	0.861	1.44+000	1.44+000	-0.1
15.097	0.816	1.52+000	1.52+000	-0.1
15.895	0.780	1.59+000	1.59+000	-0.4
16.657	0.746	1.66+000	1.66+000	-0.1

Table 21 (Cont.)

THERMAL CONDU	CTIVITY DATA	ON TI ATTOAT 7	AUG 67 422 PM	
MEAN	TEMPERATURE	OBSERVED	CALCULATED	PERCENT
TEMPERATURE	DIFFERENCE	THERMAL	THERMAL	DEVIATION
		CONDUCTIVITY	CONDUCTIVITY	
17.420	1.851	1.73+000	1.73+000	-0.2
19.196	1.703	1.88+000	1.88+000	-0.2
20.838	1.580	2.03+000	2.01+000	0.6
22.372	1.488	2.15+000	2.13+000	0.9
23.823	1.415	2.26+000	2.24+000	1.1
25.211	1.359	2.35+000	2.33+000	0.8
26.545	1.309	2.44+000	2.42+000	0.8
THERMAL CONDU	JCTIVITY DATA	ON TI A110AT 7	AUG 67 640 PM	
MEAN	TEMPERATURE	OBSERVED	CALCULATED	PERCENT
TEMPERATURE	DIFFERENCE	THERMAL	THERMAL	DEVIATION
		CONDUCTIVITY	CONDUCTIVITY	
23.124	1.556	2.18+000	2.19+000	-0.2
24.643	1.481	2.29+000	2.29+000	-0.1
26.090	1.413	2.40+000	2.39+000	0.5
27.474	1.356	2.50+000	2.48+000	0.7
28.808	1.312	2.59+000	2.57+000	0.8
30.102	1.275	2.66+000	2.65+000	0.6
31.332	1.245	2.75+000	2.72+000	0.2
THERMAL CONDUCTIVITY DATA ON TI A110AT 7 AUG 67 745 PM				
MEAN	TEMPERATURE	OBSERVED	CALCULATED	PERCENT
TEMPERATURE	DIFFERENCE	THERMAL	THERMAL	DEVIATION
		CONDUCTIVITY	CONDUCTIVITY	
5.176	0.213	4.75-001	4.75-001	0.0
5.387	0.208	4.86-001	4.94-001	-1.7
5.589	0.197	5.14-001	5.14-001	-0.1
5.783	0.190	5.33-001	5.33-001	-0.1
5.970	0.184	5.51-001	5.52-001	-0.3
6.151	0.178	5.69-001	5.71-001	-0.3
6.325	0.171	5.91-001	5.89-001	0.2

Table 21 (Cont.)

THERMAL CONDU	ICTIVITY DATA	ON TI A110AT 7	AUG 67 1045 PM	
MEAN	TEMPERATURE	OBSERVED	CALCULATED	PERCENT
TEMPERATURE	DIFFERENCE	THERMAL	THERMAL	DEVIATION
TETTI ETTT		CONDUCTIVITY	CONDUCTIVITY	
7.080	0.527	6.80-001	6.71-001	1.3
7.589	0.492	7.28-001	7.27-001	0.1
8.064	0.457	7.84-001	7.80-001	0.5
8.508	0.431	8.32-001	8.30-201	0.3
8.927	0.408	8.79-001	8.77-001	0.2
9.326	0.590	9.19-001	9.21-001	-0.2
9.707	0.372	9.64-001	9.63-001	0.0
	V. U. L			
THERMAL CONDU	CTIVITY DATA	ON TI A110AT 2	AUG 67 900 PM	
MEAN	TEMPERATURE	OBSERVED	CALCULATED	PERCENT
TEMPERATURE	DIFFERENCE	THERMAL	THERMAL	DEVIATION
		CONDUCTIVITY	CONDUCTIVITY	
24.152	0.838	2.26+000	2.26+000	-0.1
24.981	0.820	2.31+000	2.32+000	-0.4
25.790	0.798	2.37+000	2.37+000	-0.0
26.579	0.780	2.43+000	2.43+000	0.0
27.349	0.760	2.49+000	2.48+000	0.6
28.104	0.749	2.53+000	2.52+000	0.1
28.845	0.734	2.58+000	2.57+000	0.3
THERMAL CONDU	JCTIVITY DATA	ON TI A110AT 2	AUG 67 1015 PM	
MEAN	TEMPERATURE	OBSERVED	CALCULATED	PERCENT
TEMPERATURE	DIFFERENCE	THERMAL	THERMAL	DEVIATION
		CONDUCTIVITY		
24.190	0.838	2.27+000	2.26+000	0.2
25.019	0.820	2.32+000	2.32+000	-0.1
25.826	0.795	2.39+000	2.38+000	0.7
26.614	0.780	2.44+000	2.43+000	0.4
27.384	0.761	2.50+000	2.48+000	0.8
28.139	0.749	2.54+000	2.53+000	0.5
28.880	0.734	2.59+000	2.57+000	0.7

Table 21 (Cont.)

THERMAL CONDU	CTIVITY DATA	ON TI ATTOAT 3	AUG 67 230 PM	
MEAN	TEMPERATURE	OBSERVED	CALCULATED	PERCENT
TEMPERATURE	DIFFERENCE	THERMAL	THERMAL	DEVIATION
		CONDUCTIVITY	CONDUCTIVITY	
32.083	1.359	2.76+000	2.76+000	-0.2
33.429	1.331	2.82+000	2.84+000	-0.8
34.739	1.289	2.91+000	2.91+000	0.0
36.014	1.262	2.97+000	2.97+000	-0.1
37.262	1.234	3.04+000	3.04+000	0.0
38.488	1.218	3.08+000	3.10+000	-0.6
39.695	1.197	3.13+000	3.16+000	-0.8
THERMAL CONDU	UCTIVITY DATA	ON TI ATTOAT 3	AUG 67 507 PM	
MEAN	TEMPERATURE	OBSERVED	CALCULATED	PERCENT
TEMPERATURE	DIFFERENCE	THERMAL	THERMAL	DEVIATION
		CONDUCTIVITY	CONDUCTIVITY	
39.494	3.557	3.13+000	3.15+000	-0.5
42.971	3.398	3.28+000	3.30+000	-0.9
46.291	3.241	3.44+000	3.44+000	-0.2
49.471	3.119	3.57+000	3.57+000	0.0
52.539	3.018	3.69+000	3.68+000	0.2
55.519	2.941	3.78+000	3.78+000	0.1
58.428	2.878	3.87+000	3.88+000	-0.2
THERMAL CONDI	UCTIVITY DATA	ON TI ATTOAT 4	AUG 67 1150 AM	
MEAN	TEMPERATURE	OBSERVED	CALCULATED	PERCENT
TEMPERATURE	DIFFERENCE	THERMAL	THERMAL	DEVIATION
		CONDUCTIVITY	CONDUCTIVITY	
48.448	6.125	3.52+000	3.53+000	-0.2
54.411	5.802	3.72+000	3.74+000	-0.7
60.068	5.513	3.91+000	3.93+000	-0.3
65.467	5,284	4.08+000	4.08+000	-0.0
70.663	5,108	4.22+000	4.22+000	0.1
75.710	4.985	4.32+000	4.34+000	-0.3
80.639	4.873	4.42+000	4.45+000	-0.6
				November 1981

Table 21 (Cont.)

THERMAL CONDI MEAN TEMPERATURE	CTIVITY DATA TEMPERATURE DIFFERENCE	ON TI A110AT 4 OBSERVED THERMAL CONDUCTIVITY	AUG 67 520 PM CALCULATED THERMAL CONDUCTIVITY	PERCENT DEVIATION
57.207	8.853	3.84+000	3.84+000	0.2
65.809	8.350	4.07+000	4.09+000	-0.4
73.946	7.925	4.30+000	4.30+000	-0.0
81.715	7.614	4.47+000	4.47+200	-0.1
89,190	7.337	4.64+000	4.63+000	0.2
96.441	7.164	4.75+000	4.76+000	-0.3
103.521	6.996	4.86+000	4.89+000	-0.5
THERMAL COND	UCTIVITY DATA	ON TI A110AT 4	AUG 67 810 PM	
MEAN	TEMPERATURE	OBSERVED	CALCULATED	PERCENT
TEMPERATURE	DIFFERENCE	THERMAL	THERMAL	DEVIATION
		CONDUCTIVITY	CONDUCTIVITY	
26.580	1.470	2.42+000	2.43+000	-0.4
28.026	1.421	2.50+000	2.52+000	-0.8
29.420	1.366	2.60+000	2.61+000	-0.2
30.767	1.328	2.67+000	2.69+000	-0.4
32.074	1.285	2.76+000	2.76+000	0.1
33.346	1.260	2.82+000	2.83+000	-0.5
34.592	1.232	2.88+000	2.90+000	-0.5
THERMAL CONDI	UCTIVITY DATA	ON TI A110AT 25	JULY 67 106 PM	
MEAN	TEMPERATURE	OBSERVED	CALCULATED	PERCENT
TEMPERATURE	DIFFERENCE	THERMAL	THERMAL	DEVIATION
		CONDUCTIVITY	CONDUCTIVITY	
77.304	0.577	4.39+000	4.38+000	0.4
77.882	0.579	4.38+000	4.39+000	-0.2
78.458	0.573	4.42+000	4.40+000	0.5
79.032	0.573	4.42+000	4.41+000	0.2
79.603	0.569	4.45+000	4.43+000	0.6
80.175	0.570	4.45+000	4.44+000	0.2
80.742	0.569	4.46+000	4.45+000	0.1

Table 21 (Cont.)

MEAN	TEMPERATURE	ON TI A110AT 25 OBSERVED	CALCULATED	PERCENT
TEMPERATURE	DIFFERENCE	THERMAL.	THERMAL	DEVIATION
		CONDUCTIVITY	CONDUCTIVITY	
78.607	1.137	4.42+000	4.41+000	0.3
79.744	1.136	4.42+000	4.43+000	-0.2
80.874	1.124	4.47+000	4.46+000	0.3
81.996	1.120	4.48+000	4.48+000	0.1
83.111	1.110	4.52+000	4.50+000	0.4
84.219	1.107	4.53+000	4.53+000	0.2
85.324	1.102	4.56+000	4.55+000	0.2
THERMAL CONDI	CTIVITY DATA	ON TI A110AT 26	JULY 67 137 PM	
MEAN	TEMPERATURE	OBSERVED	CALCULATED	PERCENT
TEMPERATURE	DIFFERENCE	THERMAL	THERMAL	DEVIATION
		CONDUCTIVITY	CONDUCTIVITY	
81.938	2.217	4.48+000	4.48+000	0.2
84.150	2.206	4.51+000	4.52+000	-0.4
86.340	2.174	4.57+000	4.57+000	0.1
88.504	2.154	4.62+000	4.61+000	0.1
90.646	2.130	4.67+000	4.65+000	0.3
92.772	2.122	4.69+000	4.70+000	-0.2
94.885	2.104	4.75+000	4.74+000	-0.2
THERMAL CONDI	CTIVITY DATA	ON TI A110AT 27	JULY 67 230 PM	
MEAN	TEMPERATURE	OBSERVED	CALCULATED	PERCENT
TEMPERATURE	DIFFERENCE	THERMAL	THERMAL	DEVIATION
		CONDUCTIVITY	CONDUCTIVITY	
88.466	4.259	4.61+000	4.61+000	0.1
92.697	4.203	4.68+000	4.69+000	-0.4
96.857	4.118	4.78+000	4.77+000	0.1
100.945	4.053	4.85+000	4.85+000	0.1
104.960	3.982	4.94+000	4.92+000	0.4
108.925	3.942	4.99+000	4.98+000	0.0
112.837	5.886	5.06+000	5.05+000	0.2

Table 21 (Cont.)

THERMAL CONDU MEAN TEMPERATURE	CTIVITY DATA TEMPERATURE DIFFERENCE	ON TI A110AT 28 OBSERVED THERMAL	CALCULATED THERMAL	PERCENT DEVIATION
		CONDUCTIVITY	CONDUCTIVITY	
104.982	4.633	4.92+000	4.92+000	0.0
109.585	4.574	4.98+000	5.00+000	-0.3
114.112	4.480	5.09+000	5.07+000	0.3
118.554	4.405	5.17+000	5.15+000	0.5
122.929	4.344	5.24+000	5.22+000	0.5
127.258	4.314	5.28+000	5.29+000	-0.2
131.547	4.264	5.34+000	5.36+000	-0.3
THERMAL CONDU	CTIVITY DATA	ON TI A110AT 28	JULY 67 620 PM	
MEAN	TEMPERATURE	OBSERVED	CALCULATED	PERCENT
TEMPERATURE	DIFFERENCE	THERMAL	THERMAL	DEVIATION
		CONDUCTIVITY	CONDUCTIVITY	
121.579	4.532	5.19+000	5.20+000	-0.2
126.107	4.505	5.24+000	5.27+000	-0.6
130.563	4.406	5.36+000	5.34+000	0.3
154.951	4.329	5.45+000	5.41+000	0.7
139.237	4.283	5.51+000	5.49+000	0.5
143.512	4.266	5.53+000	5.56+000	-0.4
147.759	4.230	5.58+000	5.63+000	-0.8
THERMAL CONDU	CTIVITY DATA	ON TI A110AT 29	JULY 67 630 PM	
MEAN	TEMPERATURE	OBSERVED	CALCULATED	PERCENT
TEMPERATURE	DIFFERENCE	THERMAL	THERMAL	DEVIATION
		CONDUCTIVITY	CONDUCTIVITY	
73.552	2.493	4.29+000	4.29+000	0.1
76.036	2.474	4.33+000	4.35+000	-0.5
78.489	2.433	4.40+000	4.40+000	-0.0
80.907	2.403	4.45+000	4.46+000	-0.0
83.294	2.372	4.51+000	4.51+000	0.1
85.660	2.359	4.54+000	4.56+000	-0.4
88.006	2.334	4.59+000	4.60+000	-0.4

Table 21 (Cont.)

THERMAL CONDUMEAN TEMPERATURE 73.439 75.920 78.372 80.788 83.175 85.538 87.881	2.491 2.471 2.432 2.402 2.371 2.356 2.330	ON TI A110AT 30 OBSERVED THERMAL CONDUCTIVITY 4.30+000 4.33+000 4.40+000 4.46+000 4.51+000 4.54+000 4.60+000	JULY 67 110 PM CALCULATED THERMAL CONDUCTIVITY 4.29+000 4.34+000 4.40+000 4.45+000 4.55+000 4.60+000	PERCENT DEVIATION 0.3 -0.3 0.1 0.1 0.2 -0.2 -0.2
		ON TI A110AT 31 OBSERVED	JULY 67 1010 AM	PERCENT
HEAN	DIFFERENCE	THERMAL	THERMAL	DEVIATION
EHPERATORE	DIFFERENCE	CONDUCTIVITY	CONDUCTIVITY	DE111111111
73.604	2.494	4.29+000	4.29+000	0.1
76.088	2.474	4.33+000	4.35+000	-0.5
78.542	2.433	4.40+000	4.40+000	-0.1
80.958	2.401	4.46+000	4.46+000	0.0
83.344	2.370	4.52+000	4.51+000	0.2
85.706	2.356	4.54+000	4.56+000	-0.3
88.050	2.331	4.59+000	4.60+000	-0.2
THERMAL CONDL	CTIVITY DATA	ON TI ATTOAT 1	AUG 67 330 PM	
MEAN	TEMPERATURE	OBSERVED	CALCULATED	PERCENT
TEMPERATURE	DIFFERENCE	THERMAL	THERMAL	DEVIATION
		CONDUCTIVITY	CONDUCTIVITY	
66.415	0.612	4.13+000	4.11+000	0.7
67.028	0.615	4.11+000	4.12+000	-0.2
67.640	0.609	4.16+000	4.14+000	0.4
68.249	0.607	4.17+000	4.16+000	0.3
68.854	0.604	4.19+000	4.17+000	0.5
69.459	0.605	4.18+000	4.19+000	-0.1
70.062	0.601	4.21+000	4.20+000	0.1

Table 21 (Cont.)

THERMAL COND MEAN TEMPERATURE	DUCTIVITY DATA TEMPERATURE DIFFERENCE	OBSERVED THERMAL	SEPT 67 900 PM CALCULATED THERMAL	PERCENT DEVIATION
		CONDUCTIVITY	CONDUCTIVITY	
199.579	1.629	6.52+000	6.52+000	-0.0
201.202	1.618	6.56+000	6.55+000	0.2
202.808	1.592	6.67+000	6.58+000	1.4
204.397	1.586	6.69+000	6.61+000	1.3
205.980	1.581	6.71+000	6.63+000	1.2
207.572	1.603	6.62+000	6.66+000	-0.6
209.183	1.619	6.56+000	6.69+000	-2.1
THERMAL COND	OUCTIVITY DATA	ON TI A110AT 20	SEPT 67 1100 AM	
MEAN	TEMPERATURE	OBSERVED	CALCULATED	PERCENT
TEMPERATURE	DIFFERENCE	THERMAL	THERMAL	DEVIATION
		CONDUCTIVITY	CONDUCTIVITY	
199.556	1.633	6.50+000	6.52+000	-0.5
201.184	1.621	6.55+000	6.55+000	-0.0
202.792	1.596	6.65+000	6.58+000	1.2
204.384	1.589	6.68+000	6.61+000	1.1
205.971	1.584	6.70+000	6.65+000	1.0
207.565	1.606	6.61+000	6.66+000	-0.8
209.179	1.622	6.54+000	6.69+000	-2.3
THERMAL COND	OUCTIVITY DATA	ON TI A110AT 21	SEPT 67 900 AM	
MEAN	TEMPERATURE	OBSERVED	CALCULATED	PERCENT
TEMPERATURE	DIFFERENCE	THERMAL	THERMAL	DEVIATION
		CONDUCTIVITY	CONDUCTIVITY	
207.105	4.873	6.60+000	6.65+000	-0.8
211.933	4.782	6.73+000	6.74+000	-0.2
216.660	4.671	6.89+000	6.83+000	1.0
221.299	4.608	6.98+000	6.91+000	1.1
225.885	4.564	7.05+000	6.99+000	0.9
230.469	4.606	6.99+000	7.07+000	-1.2
235.090	4.636	6.94+000	7.16+000	-3.0

Table 21 (Cont.)

MEAN TEMPERATURE	TEMPERATURE DIFFERENCE	OBSERVED THERMAL CONDUCTIVITY	CALCULATED THERMAL CONDUCTIVITY	PERCENT
282.230	3.146	7.76+000	7.93+000	-2.1
285.330	3.054	8.00+000	7.97+000	0.3
288.347	2.981	8.19+000	8.01+000	2.2
291.311	2.945	8.29+000	8.05+000	2.8
294.253	2.940	8.30+000	8.09+000	2.5
297.235	3.023	8.08+000	8.13+000	-0.7
300.302	3.110	7.85+000	8.17+000	-4.0

Table 22 Electrical resistivity deviations of Ti Allo-AT

MEAN	TEMPERATURE	OBSERVED	CALCULATED	PERCENT	INTRINSIC
TEMPERATURE	RANGE	RESISTANCE	RESISTANCE	DEVIATION	RESISTANCE
9.524	3.715	2.427-003	2.427-003	0.00	1.900-006
14.185	6.226	2.426-003	2.426-003	-0.01	9.996-007
14.155	6.193	2.426-005	2.426-005	-0.01	9.996-007
22.201	10.706	2.425-003	2.425-003	-0.00	1.996-007
27.372	9.638	2.426-003	2.426-003	0.01	9.996-007
5.769	1.342	2.428-005	2.429-003	-0.01	3.600-006
8.457	3.076	2.427-003	2.427-003	0.02	2.600-006
26.543	5.479	2.425-003	2.425-003	0.00	4.996-007
26.579	5.477	2.425-003	2.425-003	0.00	4.996-007
35.959	8.890	2.430-003	2.429-003	0.01	4.800-006
49.245	22.151	2.444-003	2.444-003	-0.01	1.880-005
65.058	37.690	2.468-003	2.469-003	-0.02	4.360-005
81.118	54.238	2.499-003	2.499-003	-0.02	7.380-005
30.686	9.363	2.427-003	2.427-003	0.01	2.000-006
79.028	4.011	2.494-003	2.494-003	0.00	6.910-005
81.982	7.836	2.500-003	2.500-003	0.01	7.500-005
88.462	15.107	2.513-003	2.513-003	0.01	8.810-005
100.812	28.444	2.538-003	2.538-003	0.02	1.136-004
118.424	31.014	2.575-003	2.574-003	0.01	1.499-004
134.812	30.572	2.608-003	2.608-003	-0.00	1.834-004
80.849	16.868	2.497-003	2.497-003	-0.00	7.260-005
80.730	16.852	2.497-003	2.497-003	-0.01	7.230-005
80.899	16.858	2.497-003	2.498-003	-0.01	7.260-005
68.204	4.254	2.475-005	2.473-003	-0.01	4.840-005
204.389	11.228	2.743-005	2.744-003	-0.01	3.186-004
204.376	11.251	2.743-003	2.744-003	-0.01	3.186-004
221.206	32.740	2.774-003	2.774-003	0.01	3.496-004
291.287	21.200	2.894-003	2.895-003	-0.01	4.697-004
3.975	0.000	2.429-003	2.429-003	0.01	4.100-006
4.069	0.000	2.429-003	2.429-003	-0.01	4.000-006
20.464	0.000	2.425-003	2.425-003	-0.01	9.957-008
75.737	0.000	2.488-003	2.487-003	0.01	6.280-005
75.737	0.000	2.488-003	2.487-003	0.01	6.280-005
273.063	0.000	2.864-003	2.864-003	0.01	4.397-004

Table 23 Thermovoltage deviations of Ti Allo-AT

UPPER TEMPERATURE	LOHER TEMPERATURE	OBSERVED THERMOVOLTAGE	CALCULATED THERMOVOLTAGE	DEVIATION
11.253	7.538	-1.84	-1.83	-0.01
17.075	10.849	-5.14	-5.14	0.00
17.030	10.837	-5.10	-5.10	0.00
27.200	16.494	-15.90	-15.93	0.03
31.985	22.346	-18.57	-18.49	-0.08
6.411	5.069	-0.40	-0.41	0.01
9.892	6.816	-1.33	-1.33	-0.00
20.21	23.733	-10.26	-10.24	-0.02
29.247	23.770	-10.26	-10.25	-0.01
40.294	31.404	-22.42	-22.42	0.00
59.867	37.716	-70.09	-70.11	0.02
83.076	45.386	-158.80	-138.79	-0.01
107.019	52.781	-220.72	-220.69	-0.03
35.208	25.845	-20.23	-20.30	0.07
81.026	77.016	-16.56	-16.38	-0.18
85.875	78.039	-32.44	-32.50	0.06
95.937	80.830	-64.58	-64.65	0.07
114.779	86.336	-128.40	-128.39	-0.01
133.679	102.665	-150.17	-150.16	-0.01
149.874	119.302	-157.32	-157.33	0.01
89.173	72.305	-69.46	-69.49	0.03
89.046	72.194	-69.36	-69.38	0.02
89.215	72.358	-69.44	-69.46	0.02
70.363	66.109	-16.28	-16.28	0.00
209.993	198.765	-72.83	-72.84	0.01
209.991	198.740	-72.98	-72.98	0.00
237.408	204.668	-222.89	-222.89	-0.00
301.857	280.657	-171.37	-171.37	0.00

Table 24 Thermal conductivity deviations of At 7039

THERMAL CONDU	UCTIVITY DATA	ON AL 7039 19 00	CT 67 110 PM	
MEAN	TEMPERATURE	OBSERVED	CALCULATED	PERCENT
TEMPERATURE	DIFFERENCE	THERMAL	THERMAL	DEVIATION
		CONDUCTIVITY	CONDUCTIVITY	
8.642	0.842	1.27+001	1.25+001	0.9
9.453	0.779	1.37+001	1.37+001	-0.4
10.203	0.720	1.48+001	1.48+001	-0.2
10.901	0.677	1.57+001	1.58+001	-0.6
11.556	0.633	1.68+001	1.68+001	0.2
12.171	0.596	1.79+001	1.77+001	1.0
12.754	0.570	1.87+001	1.85+001	0.8
THERMAL CONDU	CTIVITY DATA	ON AL 7039 19 00	CT 67 430 PM	
MEAN	TEMPERATURE	OBSERVED	CALCULATED	PERCENT
TEMPERATURE	DIFFERENCE	THERMAL	THERMAL	DEVIATION
. E E		CONDUCTIVITY	CONDUCTIVITY	
11.367	1.056	1.67+001	1.65+001	1.0
12.386	0.982	1.79+001	1.80+001	-0.4
13.333	0.911	1.93+001	1.94+001	-0.3
14.218	0.859	2.05+001	2.07+001	-0.8
15.049	0.804	2.19+001	2.19+001	0.0
15.832	0.761	2.32+001	2.31+001	0.5
16.576	0.728	2.42+001	2.42+001	0.2
THERMAL CONDI	ICTIVITY DATA	ON AL 7039 19 00	CT 67 630 PM	
MEAN	TEMPERATURE	OBSERVED	CALCULATED	PERCENT
TEMPERATURE	DIFFERENCE	THERMAL	THERMAL	DEVIATION
	•	CONDUCTIVITY	CONDUCTIVITY	
17.745	1.917	2.62+001	2.59+001	1.2
19.585	1.763	2.85+001	2.86+001	-0.3
21.278	1,622	3.09+001	3.10+001	-0.3
22.848	1.520	3.30+001	3.33+001	-0.7
24.316	1.416	3.54+001	3.53+001	0.2
25.694	1.339	3.75+001	3.73+001	0.5
27.003	1.281	3.92+001	3.91+001	0.2

Table 24 (Cont.)

THERMAL CONDUCTIVITY DATA ON AL 7039 19 OCT 67 730 PM MEAN TEMPERATURE OBSERVED CALCULATED PERCENT TEMPERATURE DIFFERENCE THERMAL THERMAL DEVIATION 5.352 0.272 7.67+000 7.52+000 1.9 5.619 0.263 7.94+000 7.95+000 -0.1 5.876 0.250 8.35+000 8.35+000 0.0 6.122 0.242 8.61+000 8.74+000 -1.4 6.358 0.231 9.03+000 9.10+000 -0.8 6.584 0.220 9.47+000 9.45+000 0.2	
CONDUCTIVITY CONDUCTIVITY 5.352	N
5.352 0.272 7.67+000 7.52+000 1.9 5.619 0.263 7.94+000 7.95+000 -0.1 5.876 0.250 8.35+000 8.35+000 0.0 6.122 0.242 8.61+000 8.74+000 -1.4 6.358 0.231 9.03+000 9.10+000 -0.8 6.584 0.220 9.47+000 9.45+000 0.2	
5.619 0.263 7.94+000 7.95+000 -0.1 5.876 0.250 8.35+000 8.35+000 0.0 6.122 0.242 8.61+000 8.74+000 -1.4 6.358 0.231 9.03+000 9.10+000 -0.8 6.584 0.220 9.47+000 9.45+000 0.2	
5.619 0.263 7.94+000 7.95+000 -0.1 5.876 0.250 8.35+000 8.35+000 0.0 6.122 0.242 8.61+000 8.74+000 -1.4 6.358 0.231 9.03+000 9.10+000 -0.8 6.584 0.220 9.47+000 9.45+000 0.2	
5.876 0.250 8.35+000 8.35+000 0.0 6.122 0.242 8.61+000 8.74+000 -1.4 6.358 0.231 9.03+000 9.10+000 -0.8 6.584 0.220 9.47+000 9.45+000 0.2	
6.122 0.242 8.61+000 8.74+000 -1.4 6.358 0.231 9.03+000 9.10+000 -0.8 6.584 0.220 9.47+000 9.45+000 0.2	
6.358 0.231 9.03+000 9.10+000 -0.8 6.584 0.220 9.47+000 9.45+000 0.2	
6.584 0.220 9.47+000 9.45+000 0.2	
6.802 0.216 9.68+000 9.78+000 -1.0	
THERMAL CONDUCTIVITY DATA ON AL 7039 20 OCT 67 1200 NOON	
MEAN TEMPERATURE OBSERVED CALCULATED PERCENT	
TEMPERATURE DIFFERENCE THERMAL THERMAL DEVIATION	N
CONDUCTIVITY CONDUCTIVITY	
21.947 0.141 3.25+001 3.20+001 1.5	
22.090 0.144 3.18+001 3.22+001 -1.2	
22.234 0.144 3.18+001 3.24+001 -1.9	
22.377 0.142 3.23+001 3.26+001 -0.9	
22.518 0.139 3.30+001 3.28+001 0.5	
22.657 0.139 3.31+001 3.30+001 0.3	
22.796 0.139 3.31+001 3.32+001 -0.3	
THERMAL CONDUCTIVITY DATA ON AL 7039 20 OCT 67 215 PM	
MEAN TEMPERATURE OBSERVED CALCULATED PERCENT	
TEMPERATURE DIFFERENCE THERMAL THERMAL DEVIATION	N
CONDUCTIVITY CONDUCTIVITY	
24.920 1.010 3.66+001 3.62+001 1.1	
25.920 0.989 3.74+001 3.76+001 -0.6	
26.891 0.954 3.87+001 3.89+001 -0.5	
27.833 0.929 3.98+001 4.02+001 -1.1	
28.743 0.891 4.15+001 4.14+001 0.0	
29.622 0.866 4.27+001 4.26+001 0.2	
30.476 0.844 4.38+001 4.37+001 0.2	

Table 24 (Cont.)

THERMAL CONDU	CTIVITY DATA	ON AL 7039 20 0	CT 67 400 PM	
MEAN	TEMPERATURE	OBSERVED	CALCULATED	PERCENT
TEMPERATURE	DIFFERENCE	THERMAL	THERMAL	DEVIATION
		CONDUCTIVITY	CONDUCTIVITY	
34.063	3.350	4.89+001	4.83+001	1.1
37.315	3.154	5.19+001	5.22+001	-0.6
40.368	2.952	5.54+001	5.57+001	-0.5
45.247	2.804	5.84+001	5.88+001	-0.7
45.976	2.654	6.16+001	6.15+001	0.2
48.579	2.551	6.41+001	6.40+001	0.1
51.084	2.459	6.66+001	6.63+001	0.4
THERMAL CONDU	CTIVITY DATA	ON AL 7039 20 0	CT 67 535 PM	
MEAN	TEMPERATURE	OBSERVED	CALCULATED	PERCENT
TEMPERATURE	DIFFERENCE	THERMAL	THERMAL	DEVIATION
		CONDUCTIVITY	CONDUCTIVITY	
48.375	4.398	6.48+001	6.39+001	1.5
52.679	4.210	6.77+001	6.77+001	-0.1
56.787	4.005	7.11+001	7.11+001	0.0
60.714	3.848	7.41+001	7.41+001	-0.0
64.489	5.703	7.70+001	7.68+001	0.2
68.132	3.583	7.95+001	7.92+001	0.4
71.674	3.501	8.14+001	8.14+001	0.1
THERMAL CONDU	CTIVITY DATA	ON AL 7039 11 0	CT 67 750PM	
MEAN	TEMPERATURE	OBSERVED	CALCULATED	PERCENT
TEMPERATURE	DIFFERENCE	THERMAL	THERMAL	DEVIATION
		CONDUCTIVITY	CONDUCTIVITY	
84.845	2.500	8.92+001	8.85+001	0.9
87.346	2.502	8.92+001	8.97+001	-0.5
89.827	2.460	9.07+001	9.08+001	-0.2
92.280	2.446	9.12+001	9.19+001	-0.8
94.710	2.413	9.24+001	9.30+001	-0.6
97.104	2.375	9.39+001	9.40+001	-0.1
99.472	2.361	9.45+001	9.50+001	-0.5

Table 24 (Cont.)

THERMAL CONDI	UCTIVITY DATA	ON AL 7039 12 00	CT 67 1040AM	
MEAN	TEMPERATURE	OBSERVED	CALCULATED	PERCENT
TEMPERATURE	DIFFERENCE	THERMAL	THERMAL	DEVIATION
		CONDUCTIVITY	CONDUCTIVITY	
97.951	5.772	9.53+001	9.44+001	0.9
103.677	5.721	9.61+001	9.67+001	-0.7
109.320	5.564	9.88+001	9.90+001	-0.2
114.841	5.479	1.00+002	1.01+002	-0.7
120.251	5.341	1.03+002	1.03+002	-0.2
125.544	5.245	1.05+002	1.05+002	-0.2
130.752	5.172	1.06+002	1.07+002	-0.5
THERMAL CONDI	UCTIVITY DATA	ON AL 7039 12 00	CT 67 412PM	
MEAN	TEMPERATURE	OBSERVED	CALCULATED	PERCENT
TEMPERATURE	DIFFERENCE	THERMAL	THERMAL	DEVIATION
		CONDUCTIVITY	CONDUCTIVITY	
122.985	7.615	1.05+002	1.04+002	1.1
130.568	7.550	1.06+002	1.07+002	-0.6
137.993	7.301	1.10+002	1.09+002	0.3
145.229	7.172	1.12+002	1.12+002	-0.2
152.306	6.981	1.15+002	1.15+002	0.3
159.219	6.846	1.17+002	1.17+002	0.2
166.022	6.758	1.19+002	1.19+002	-0.5
THERMAL CONDU	UCTIVITY DATA	ON AL 7039 12 00	CT 67 830PM	
MEAN	TEMPERATURE	OBSERVED	CALCULATED	PERCENT
TEMPERATURE	DIFFERENCE	THERMAL	THERMAL	DEVIATION
		CONDUCTIVITY	CONDUCTIVITY	
122.979	7.615	1.05+002	1.04+002	1.2
130.559	7.546	1.06+002	1.07+002	-0.5
137.984	7.304	1.10+002	1.09+002	0.3
145.221	7.170	1.12+002	1.12+002	-0.1
152.301	6.990	1.15+002	1.15+002	0.2
159.222	6.853	1.17+002	1.17+002	0.1
166.031	6.765	1.19+002	1.19+002	-0.6
				un fest fact non mar first fact

Table 24 (Cont.)

THERMAL CONDO MEAN TEMPERATURE 152.384 161.740 170.881 179.770 188.466 196.979 205.372	TEMPERATURE	ON AL 7039 13 0 OBSERVED THERMAL CONDUCTIVITY 1.17+002 1.18+002 1.22+002 1.25+002 1.28+002 1.30+002 1.31+002	CT 67 905 AM CALCULATED THERMAL CONDUCTIVITY 1.15+002 1.18+002 1.21+002 1.24+002 1.27+002 1.30+002 1.33+002	PERCENT DEVIATION 1.8 -0.0 1.0 0.4 0.5 -0.1 -1.1
THERMAL (OND)	ICTIVITY DATA	ON AL 7039 13 0	CT 67 930 PM	
MEAN TEMPERATURE	TEMPERATURE	OBSERVED THERMAL	CALCULATED THERMAL	PERCENT DEVIATION
70 674	2 404	CONDUCTIVITY	8.19+0C!	1.4
72.631	2.481	8.31+001	8.34+001	-0.4
75.113	2.485	8.30+001 8.46+001	8.47+001	-0.2
77.573	2.438	8.55+001	8.60+001	-0.6
79.998 82.389	2.369	8.70+001	8.72+001	-0.3
84.736	2.324	8.87+001	8.84+001	0.3
87.061	2.325	8.87+001	8.95+001	-0.9
THERMAL COND	UCTIVITY DATA	ON AL 7039 23 0	CT 67 625 PM	
MEAN	TEMPERATURE	OBSERVED	CALCULATED	PERCENT
TEMPERATURE	DIFFERENCE	THERMAL	THERMAL	DEVIATION
		CONDUCTIVITY	CONDUCTIVITY	
198.190	1.594	1.30+002	1.30+002	0.1
199.786	1.598	1.30+002	1.31+002	-0.6
201.374	1.577	1.32+002	1.31+002	0.3
202.950	1.576	1.32+002	1.32+002	0.0
204.520	1.564	1.33+002	1.33+002	0.3
206.089	1.573	1.32+002	1.33+002	-0.6
207.661	1.571	1.32+002	1.34+002	-0.9

Table 24 (Cont.)

THERMAL CONDI		ON AL 7039 24 0	CT 67 1112 AM	
MEAN	TEMPERATURE	OBSERVED	CALCULATED	PERCENT
TEMPERATURE	DIFFERENCE	THERMAL	THERMAL	DEVIATION
		CONDUCTIVITY	CONDUCTIVITY	
203.772	3.517	1.33+002	1.32+002	0.4
207.284	3.505	1.33+002	1.33+002	-0.2
210.763	3.453	1.35+002	1.35+002	0.5
214.205	3.432	1.36+002	1.36+002	0.3
217.620	3.399	1.37+002	1.37+002	0.4
221.023	3.407	1.37+002	1.38+002	-0.6
224.421	3.390	1.38+002	1.39+002	-0.9
THERMAL CONDU	UCTIVITY DATA	ON AL. 7039 25 0	CT 67 120 PM	
MEAN	TEMPERATURE	OBSERVED	CALCULATED	PERCENT
TEMPERATURE	DIFFERENCE	THERMAL	THERMAL	DEVIATION
		CONDUCTIVITY	CONDUCTIVITY	
281.052	2.289	1.55+002	1.54+002	0.7
283.343	2.294	1.55+002	1.54+002	0.2
285.625	2.270	1.56+002	1.55+002	0.9
287.895	2.269	1.56+002	1.55+002	0.8
290.157	2.254	1.57+002	1.56+002	1.1
292.422	2.277	1.56+002	1.56+002	-0.1
294.701	2.281	1.56+002	1.56+002	-0.5
THERMAL CONDU	UCTIVITY DATA	ON AL 7039 27 0	CT 67 215 PM	
MEAN	TEMPERATURE	OBSERVED	CALCULATED	PERCENT
TEMPERATURE	DIFFERENCE	THERMAL	THERMAL	DEVIATION
		CONDUCTIVITY	CONDUCTIVITY	
281.492	2.424	1.56+002	1.54+002	0.9
283.932	2.454	1.54+002	1.55+002	-0.6
286.380	2.442	1.54+002	1.55+002	-0.4
288.822	2.443	1.54+002	1.55+002	-0.7
291.252	2.416	1.56+002	1.56+002	0.1
293.675	2.429	1.55+002	1.56+002	-0.7
296.107	2.434	1.55+002	1.57+002	-1.1

Table 25 Electrical resistivity deviations of At 7039

MEAN TEMPERATURE	TEMPERATURE RANGE	OBSERVED RESISTANCE	CALCULATED	PERCENT	INTRINSIC RESISTANCE
10.811	4.818	2.896-004	2.896-004	-0.02	5.055-008
14.109	6.101	2.896-004	2.895-004	0.04	1.505-007
22.639	10.857	2.904-004	2.904-004	0.00	9.005-007
6.102	1.694	2.895-004	2.895-004	0.00	5.457-010
22.374	0.989	2.903-004	2.903-004	-0.00	8.005-007
27.772	6.483	2.913-004	2.913-004	-0.01	1.801-006
42.947	19.925	2.988-004	2.987-004	0.04	9.301-006
60.407	27.249	3.162-004	3.163-004	-0.04	2.670-005
92.226	17.058	3.667-004	3.667-004	0.01	7.720-005
114.617	38.293	4.106-004	4.106-004	-0.01	1.211-004
144.903	50.225	4.732-004	4.732-004	0.00	1.837-004
144.900	50.243	4.732-004	4.732-004	0.01	1.837-000
179.371	61.863	5.452-004	5.451-004	0.02	2.557-004
79.929	16.833	3.448-004	3.448-004	-0.01	5.530-005
202.938	11.054	5.935-004	5.940-004	-0.08	3.040-004
214.156	24.103	6.173-004	6.170-004	0.06	3.278-004
287.885	15.934	7.675-004	7.671-004	0.05	4.780-004
288.809	17.043	7.686-004	7.690-004	-0.05	4.792-004
76.074	0.000	3.383-004	3.383-004	0.01	4.880-005
4.052	0.000	2.895-004	2.895-004	-0.00	5.457-010
20.284	0.000	2.899-004	2.900-004	-0.03	4.505-007

Table 26 Thermovoltage deviations of At 7039

UPPER TEMPERATURE	LONER TEMPERATURE	OBSERVED THERMOVOLTAGE	CALCULATED THERMOVOLTAGE	DEVIATION
15.039	8.221	-1.21	-1.22	0.01
16.940	10.859	-2.39	-2.35	-0.04
27.644	16.787	-9.26	-9.28	0.02
6.910	5.216	-0.22	-0.24	0.02
22.865	21.876	-0.90	-0.86	-0.04
30.898	24.415	-7.60	-7.60	0.00
52.313	32.388	-35.54	-35.60	0.06
73.425	46.176	-58.61	-58.49	-0.12
100.653	83.595	-39.58	-39.69	0.11
133.338	95.045	-89.45	-89.53	0.08
169.401	119.177	-118.78	-118.71	-0.07
169.414	119.171	-118.82	-118.75	-0.07
209.546	147,683	-150.81	-150.86	0.05
88.223	71.390	-38.71	-38.75	0.04
208.446	197.393	-27.79	-27.79	-0.00
226.117	202.014	-61.62	-61.65	0.03
295.841	279.907	-46.23	-46.26	0.03
297.324	280.280	-49.61	-49.56	-0.05

Table 27 Thermal conductivity deviations of Inconel 718

THERMAL COND	UCTIVITY DATA	ON INCONEL 718	27 DEC 67 645 PM	
MEAN	TEMPERATURE	OBSERVED	CALCULATED	PERCENT
TEMPERATURE	DIFFERENCE	THERMAL	THERMAL	DEVIATION
		CONDUCTIVITY	CONDUCTIVITY	
18.029	1.584	2.16+000	2.16+000	0.2
19.555	1.463	2.35+000	2.35+000	-0.2
20.962	1.556	2.53+000	2.52+000	0.5
22.280	1.278	2.69+000	2.67+000	0.5
25.526	1.215	2.82+000	2.81+000	0.3
24.715	1.158	2.96+000	2.94+000	0.7
25.852	1.119	3.06+000	5.06+000	-0.0
THERMAL COND	UCTIVITY DATA	ON INCONEL 718	27 DEC 67 850 PM	
MEAN	TEMPERATURE	OBSERVED	CALCULATED	PERCENT
TEMPERATURE	DIFFERENCE	THERMAL	THERMAL	DEVIATION
		CONDUCTIVITY	CONDUCTIVITY	
12.588	1.031	1.41+000	1.41+000	-0.1
13.376	0.944	1.54+000	1.55+000	-0.4
14.284	0.871	1.67+000	1.67+000	-0.2
15.128	0.817	1.78+000	1.79+000	-0.1
15.923	0.773	1.88+000	1.89+000	-0.4
16.674	0.750	1.99+000	1.99+000	0.2
17.591	0.702	2.07+000	2.08+000	-0.4
THERMAL COND	UCTIVITY DATA	ON INCONEL 718	27 DEC 67 1045 P	н
MEAN	TEMPERATURE	OBSERVED	CALCULATED	PERCENT
TEMPERATURE	DIFFERENCE	THERHAL	THERMAL	DEVIATION
		CONDUCTIVITY	CONDUCTIVITY	
6.734	0.405	6.44-001	6.36-001	1.3
7.124	0.375	6.97-001	6.85-001	1.7
7.486	0.350	7.44-001	7.35-001	1.6
7.826	0.330	7.95-001	7.78-001	1.9
8.148	0.315	8.29-001	8.21-001	0.9
8.455	0.298	8.77-001	8.65-001	1.6
8.746	0.286	9.13-001	9.03-001	1.2

Table 27 (Cont.)

THERMAL CONDI	UCTIVITY DATA	ON INCONEL 718	27 DEC 67 1110	PM
MEAN	TEMPERATURE	OBSERVED	CALCULATED	PERCENT
TEMPERATURE	DIFFERENCE	THERMAL	THERMAL	DEVIATION
		CONDUCTIVITY	CONDUCTIVITY	
6.738	0.406	6.41-001	6.57-001	0.8
7.129	0.576	6.94-001	6.86-001	1.1
7.495	0.551	7.41-001	7.54-001	1.0
7.834	0.330	7.91-001	7.79-001	1.5
8.157	0.516	8.24-001	8.22-001	0.3
8.464	0.298	8.76-001	8.64-001	1.3
8.756	0.286	9.11-001	9.04-001	0.7
THERMAL CONDI	UCTIVITY DATA	ON INCONEL 718	27 DEC 67 1136	PM
MEAN	TEMPERATURE	OBSERVED	CALCULATED	PERCENT
TEMPERATURE	DIFFERENCE	THERMAL	THERMAL	DEVIATION
		CONDUCTIVITY	CONDUCTIVITY	
6.744	0.408	6.36-001	6.57-001	-0.2
7.137	0.577	6.89-001	6.87-001	0.5
7.502	0.555	7.36-001	7.35-001	0.2
7.845	0.552	7.85-001	7.80-001	0.4
8.169	0.517	8.20-001	8.24-001	-0.4
8.476	0.298	8.71-001	8.66-001	0.6
8.769	0.287	9.06-001	9.06-001	-0.0
THERMAL CONDI	UCTIVITY DATA	ON INCONEL 718	27 DEC 67 1210	PM
MEAN	TEMPERATURE	OBSERVED	CALCULATED	PERCENT
TEMPERATURE	DIFFERENCE	THERMAL	THERMAL	DEVIATION
		CONDUCTIVITY	CONDUCTIVITY	
6.763	0.407	6.33-001	6.40-001	-1.0
7.155	0.577	6.85-001	6.90-001	-0.7
7.520	0.352	7.51-001	7.57-001	-0.8
7.862	0.332	7.78-001	7.85-001	-0.6
8.186	0.516	8.16-001	8.26-001	-1.2
8.495	0.297	8.67-001	8.68-001	-0.1
8.785	0.287	8.98-001	9.08-001	-1.2

Table 27 (Cont.)

MEAN	TEMPERATURE	OBSERVED	27 DEC 67 1250 CALCULATED	PERCENT
TEMPERATURE	DIFFERENCE	THERMAL	THERMAL	DEVIATION
		CONDUCTIVITY	CONDUCTIVITY	
6.797	0.405	6.51-001	6.44-001	-2.1
7.186	0.575	6.82-001	6.94-001	-1.7
7.548	0.350	7.28-001	7.41-001	-1.7
7.888	0.529	7.75-001	7.86-001	-1.4
8.210	0.514	8.12-001	8.29-001	-2.2
6.515	0.295	8.64-001	8.71-001	-0.8
8.806	0.206	8.91-001	9.11-001	-2.5
THERMAL COND	CTIVITY DATA	ON INCONEL 718	28 DEC 67 535 P	H
MEAN	TEMPERATURE	OBSERVED	CALCULATED	PERCENT
TEMPERATURE	DIFFERENCE	THERMAL	THERMAL.	DEVIATION
		CONDUCTIVITY	CONDUCTIVITY	
23.155	0.557	2.77+000	2.77+000	-0.0
25.688	0.529	2.82+000	2.85+000	-0.4
24.210	0.515	2.89+000	2.89+000	0.1
24.719	0.505	2.95+000	2.94+000	0.3
25.220	0.496	3.00+000	3.00+000	0.2
25.711	0.487	3.06+000	5.05+000	0.2
26,195	0.480	3.10+000	3.10+000	-0.0
THERMAL CONDI	CTIVITY DATA	ON INCONEL 718	28 DEC 67 805 P	H
MEAN	TEMPERATURE	OBSERVED	CALCULATED	PERCENT
TEMPERATURE	DIFFERENCE	THERMAL	THERMAL	DEVIATION
		CONDUCTIVITY	CONDUCTIVITY	
35.521	2.051	5.85+000	3.81+000	0.6
35.540	1.985	3.97+000	5.99+000	-0.6
37.481	1.898	4.14+000	4.15+000	-0.3
39.345	1.830	4.50+000	4.30+000	-0.0
41.150	1.779	4.42+000	4.44+000	-0.5
42.902	1.725	4.56+000	4.57+000	-0.3
44.609	1.689	4.66+000	4.69+000	-0.8

Table 27 (Cont.)

THERMAL CONDUMEAN TEMPERATURE	CTIVITY DATA TEMPERATURE DIFFERENCE	ON INCONEL 718 OBSERVED THERMAL CONDUCTIVITY	29 DEC 67 1215 F CALCULATED THERMAL CONDUCTIVITY	PERCENT DEVIATION
20 078				0.5
26.673	1.103	3.17+000	3.15+000	
27.762	1.074	5.26+000	5.26+000	-0.2
28.816	1.034	3.38+000	5.57+000	0.5
29.857	1.007	3.47+000	3.47+000	0.1
30.831	0.980	3.57+000	5.56+000	0.1
31.800	0.959	3.64+000	3.65+000	-0.3
32.750	0.939	3.72+000	5.74+000	-0.6
THERMAL CONDU	CTIVITY DATA	ON INCONEL 718	29 DEC 67 520 PI	1
MEAN	TEMPERATURE	OBSERVED	CALCULATED	PERCENT
TEMPERATURE	DIFFERENCE	THERMAL	THERMAL	DEVIATION
		CONDUCTIVITY	CONDUCTIVITY	
45.449	5.951	4.76+000	4.75+000	0.2
49.299	5.769	4.97+000	5.01+000	-0.7
52.975	3.582	5.22+000	5.24+000	-0.2
56.483	3.435	5.46+000	5.44+000	0.4
59.867	5.555	5.62+000	5.61+000	0.1
63.153	5.259	5.78+000	5.78+000	0.1
66.360	5.174	5.90+000	5.95+000	-0.5
THE DWAL COND	KTIVITY DATA	ON INCOME! 740	22 DEC 67 1145	
	TEMPERATURE	OBSERVED	CALCULATED	
MEAN TEMPERATURE	DIFFERENCE	THERMAL	THERMAL	PERCENT
LINERATURE	DIFFERENCE	CONDUCTIVITY	CONDUCTIVITY	DEVIATION
00 000	4 470			
88.662	1.478	6.84+000	6.76+000	1.2
90.151	1.500	6.75+000	6.80+000	-0.8
91.637	1.475	6.86+000	6.85+000	0.1
95.105	1.462	6.92+000	6.89+000	0.5
94.564	1.456	6.95+000	6.95+000	0.2
96.016	1.450	6.98+000	6.98+000	0.0
97.465	1.448	6.98+000	7.02+000	-0.5

Table 27 (Cont.)

	DUCTIVITY DATA		22 DEC 67 545 PM	
MEAN	TEMPERATURE	OBSERVED	CALCULATED	PERCENT
TEMPERATURE	DIFFERENCE	THER'TAL	THERMAL	DEVIATION
		CONDUCTIVITY	CONDUCTIVITY	
101.430	4.556	7.19+000	7.12+000	1.0
105.768	4.559	7.19+000	7.24+000	-0.6
110.055	4.256	7.36+000	7.54+000	0.1
114.266	4.187	7.46+000	7.45+000	0.1
118.425	4.132	7.55+000	7.54+000	0.0
122.539	4.095	7.62+000	7.64+000	-0.3
126.619	4.066	7.67+000	7.75+000	-0.8
THERMAL CON	DUCTIVITY DATA	ON INCONEL 718	23 DEC 67 1215 F	PM
MEAN	TEMPERATURE	OBSERVED	CALCULATED	PERCENT
TEMPERATURE	DIFFERENCE	THERMAL	THERMAL	DEVIATION
		CONDUCTIVITY	CONDUCTIVITY	
138.125	11.349	8.08+000	7.98+000	1.2
149.410	11.226	8.18+000	8.25+000	-0.6
160.441	10.835	8.46+000	8.46+000	-0.0
171.157	10.598	8.67+000	8.69+000	-0.3
181.634	10.355	8.86+000	8.91+000	-0.6
191.900	10.179	9.02+000	9.13+000	-1.5
202.005	10.031	9.15+000	9.55+000	-2.2
THERMAL CON	DUCTIVITY DATA	ON INCONEL 718	24 DEC 67 400 PM	1
MEAN	TEMPERATURE	OBSERVED	CALCULATED	PERCENT
TEMPERATURE	DIFFERENCE	THERMAL	THERMAL	DEVIATION
		CONDUCTIVITY	CONDUCTIVITY	
71.854	1.749	6.22+000	6.16+000	0.9
73.606	1.756	6.20+000	6.25+000	-0.5
75.345	1.722	6.32+000	6.30+000	0.2
77.059	1.706	6.38+000	6.36+000	0.3
78.757	1.689	6.44+000	6.43+000	0.3
80.441	1.680	6.48+000	6.49+000	-0.1
82.115	1.668	6.52+000	6.54+000	-0.3

Table 27 (Cont.)

THERMAL COND	UCTIVITY DATA	ON INCONEL 718 3	JAN 68 750 PM	PERCENT
TEMPERATURE	DIFFERENCE	THERMAL	THERMAL	DEVIATION
. E E		CONDUCTIVITY	CONDUCTIVITY	
206.974	2.650	9.67+000	9.45+000	2.3
209.648	2.698	9.51+000	9.51+000	0.0
212.325	2.657	9.64+000	9.57+000	0.7
214.981	2.656	9.66+000	9.62+000	0.4
217.629	2.640	9.71+000	9.68+000	0.5
220.275	2.648	9.68+000	9.75+000	-0.5
222.922	2.650	9.67+000	9.79+000	-1.2
THERMAL COND	UCTIVITY DATA	ON INCONEL 718 OBSERVED	JAN 67 140 PM CALCULATED	PERCENT
TEMPERATURE	DIFFERENCE	THERMAL	THERMAL	DEVIATION
		CONDUCTIVITY	CONDUCTIVITY	
250.068	9.979	1.01+001	9.94+000	1.9
240.057	9.999	1.01+001	1.01+001	-0.2
249.929	9.746	1.04+001	1.03+001	0.5
259.606	9.607	1.05+001	1.05+001	0.2
269.126	9.455	1.07+001	1.07+001	0.3
278.522	9.559	1.08+001	1.08+001	-0.3
287.855	9.264	1.09+001	1.10+001	-0.6

Table 28 Electrical resistivity deviations of Inconel 718

MEAN	TEMPERATURE	OBSERVED	CALCULATED	PERCENT	INTRINSIC
TEMPERATURE	RANGE	RESISTANCE	RESISTANCE	DEVIATION	RESISTANCE
22.131	9.174	1.918-003	1.918-003	0.00	1.161-006
15.025	5.869	1.920-003	1.920-003	-0.02	2.961-006
7.788	2.358	1.924-003	1.924-003	0.00	6.561-006
7.796	2.364	1.924-003	1.924-003	0.00	6.561-006
7.806	2.372	1.924-003	1.924-003	0.00	6.561-006
7.824	2.369	1.924-003	1.924-003	0.00	6.561-006
7.850	2.355	1.924-005	1.924-003	0.00	6.561-006
24.700	3.549	1.918-005	1.918-005	0.00	6.607-007
39.221	12.958	1.918-003	1.918-003	0.00	1.061-006
29.781	7.097	1.918-003	1.917-003	0.02	5.607-007
56.226	24.463	1.922-003	1.925-003	-0.02	5.361-006
93.086	10.266	1.940-005	1.959-003	0.01	2.256-005
114.157	29.589	1.951-003	1.951-003	0.01	3.386-005
170.666	74.572	1.982-003	1.982-003	0.01	6.516-005
77.025	11.970	1.951-005	1.951-005	-0.04	1.366-005
214.964	18.598	2.005-005	2.006-003	-0.03	8.856-005
259.305	67.387	2.029-003	2.029-003	0.01	1.120-004
4.053	0.000	1.927-003	1.927-003	-0.00	9.561-006
20.150	0.000	1.919-003	1.919-003	0.00	1.561-006
73.683	0.000	1.930-003	1.950-005	0.02	1.316-005

Table 29 Thermovoltage deviations of Inconel 718

UPPER	LONER TEMPERATURE	OBSERVED THERMOVOLTAGE	CALCULATED THERMOVOLTAGE	DEVIATION
TEMPERATURE		-0.22	-0.25	0.03
26.411	17.237	0.53	0.55	-0.02
17.742	11.872		0.25	0.00
8.889	6.531	0.25		0.00
8.899	6.535	0.25	0.25	0.00
8.912	6.540	0.25	0.25	
8.929	6.560	0.25	0.25	0.00
8.949	6.594	0.25	0.25	0.00
	22.886	-0.33	-0.30	-0.03
26.435	32.496	-3.43	-3.43	-0.00
45.454		-1.20	-1.20	0.00
33.219	26.122		-6.80	-0.01
67.947	43.483	-6.81	-0.98	0.05
98.190	87.923	-0.93		-0.05
128.652	99.263	0.12	0.17	
207.020	132.448	14.62	14.60	0.02
82.949	70.979	-2.16	-2.21	0.05
224.247	205.648	5.56	5.61	-0.05
292.465	225.078	24.70	24.70	0.00

Table 30 Thermal conductivity deviations of Hastelloy X

PERCENT DEVIATION 1.2 -0.7 0.1 0.3 0.3 0.3 -0.5
1.2 -0.7 0.1 0.3 0.3 0.3 -0.5
-0.7 0.1 0.3 0.3 0.3 -0.5
-0.7 0.1 0.3 0.3 0.3 -0.5
0.1 0.3 0.3 0.3 -0.5
0.3 0.3 0.3 -0.5
0.3 0.3 0.3 -0.5
0.3
0.3
PM
PERCENT
DEVIATION
-0.4
-0.9
-0.6
-0.2
0.3
0.4
-0.2
PM
PERCENT
DEVIATION
0.1
-0.2
0.3
0.8
1.3
1.1

Table 30 (Cont.)

THERMAL CONDU MEAN TEMPERATURE	CTIVITY DATA TEMPERATURE DIFFERENCE	FOR HASTELLOY X OBSERVED THERMAL	THERMAL	PERCENT DEVIATION
		CONDUCTIVITY	CONDUCTIVITY	
6.188	0.364	8.30-001	8.18-001	1.5
6.549	0.357	8.48-001	8.74-001	-3.1
6.890	0.327	9.26-001	9.29-001	-0.3
7.207	0.306	9.87-001	9.80-001	0.8
7.505	0.291	1.04+000	1.03+000	1.1
7.792	0.283	1.07+000	1.07+000	-0.4
8.068	0.269	1.12+000	1.12+000	0.3
THERMAL CONDI	CTIVITY DATA	FOR HASTELLOY X	25 JAN 68 200	PM
MEAN	TEMPERATURE	OBSERVED	CALCULATED	PERCENT
TEMPERATURE	DIFFERENCE	THERMAL	THERMAL	DEVIATION
ILITERATURE	DIFFERENCE	CONDUCTIVITY	CONDUCTIVITY	
24.526	0.663	3.19+000	3.19+000	0.0
25.185	0.655	5.23+000	3.25+000	-0.7
25.831	0.637	3.32+000	3.31+000	0.2
26.463	0.626	3.38+000	3.37+000	0.3
27.083	0.615	3.44+000	3.42+000	0.5
27.693	0.604	3.50+000	5.47+000	0.7
28.293	0.596	3.54+000	3.53+000	0.5
		EAR HAGSELLAY V	OF IAN CO 400	DM
		FOR HASTELLOY X	CALCULATED	PERCENT
MEAN	TEMPERATURE	OBSERVED	THERMAL	DEVIATION
TEMPERATURE	DIFFERENCE	THERMAL CONDUCTIVITY	CONDUCTIVITY	DETIMITON
** ***	2 452	3.91+000	3.91+000	0.1
33.055	2.159		4.06+000	-0.9
35.182	2.096	4.03+000	4.20+000	-0.4
37.238	2.015		4.33+000	-0.3
39.222	1.952	4.32+000	4.46+000	-0.0
41.145	1.894	4.55+000	4.57+000	-0.4
43.019	1.854	4.64+000	4.68+000	-0.9
44.855	1.820	4.64*000	4.667000	V

Table 30 (Cont.)

THERMAL COND!	UCTIVITY DATA	FOR HASTELLOY X	25 JAN 68 600 I	PM
MEAN	TEMPERATURE	OBSERVED	CALCULATED	PERCENT
TEMPERATURE	DIFFERENCE	THERMAL	THERMAL	DEVIATION
		CONDUCTIVITY	CONDUCTIVITY	
49.843	4.311	4.97+000	4.94+000	0.5
54.096	4.195	5.11+000	5.15+000	-0.8
58.205	4.024	5.32+000	5.33+000	-0.1
62.160	3.886	5.51+000	5.49+000	0.4
65.999	3.792	5.65+000	5.63+000	0.3
69.750	3.709	5.77+000	5.76+000	0.2
73.435	3.661	5.85+000	5.88+000	-0.5
THERMAL COND	UCTIVITY DATA	FOR HASTELLOY X	26 JAN 68 1110	AM
MEAN	TEMPERATURE		CALCULATED	PERCENT
TEMPERATURE	DIFFERENCE	THERMAL	THERMAL	DEVIATION
		CONDUCTIVITY	CONDUCTIVITY	
21.938	0.356	2.90+000	2.94+000	-1.3
22.290	0.349	2.96+000	2.97+000	-0.5
22.638	0.346	2.98+000	3.01+000	-0.8
22.980	0.339	3.04+000	3.04+000	-0.1
23.317	0.335	3.08+000	3.07+000	0.1
23.651	0.332	3.10+000	3.11+000	-0.1
23.981	0.328	3.14+000	3.14+000	0.2
THERMAL COND	UCTIVITY DATA	FOR HASTELLOY X	26 JAN 68 1230	PM
MEAN	TEMPERATURE		CALCULATED	PERCENT
TEMPERATURE	DIFFERENCE	THERMAL	THERMAL	DEVIATION
		CONDUCTIVITY	CONDUCTIVITY	
27.800	1.316	3.49+000	3.48+000	0.1
29.101	1.287	3.57+000	3.59+000	-0.7
30.366	1.242	3.70+000	3.70+000	0.0
31.591	1.210	3.80+000	3.79+000	0.0
32.783	1.175	3.91+000	3.88+000	0.6
33.948	1.155	3.97+000	3.97+000	0.0
35.093	1.134	4.05+000	4.05+000	-0.2

Table 30 (Cont.)

THERMAL CONDUMEAN TEMPERATURE	TEMPERATURE DIFFERENCE	FOR HASTELLOY X OBSERVED THERMAL CONDUCTIVITY	18 JAN 68 1200 CALCULATED THERMAL CONDUCTIVITY	NOON PERCENT DEVIATION
72.271	1.900	5.89+000	5.84+000	0.8
74.174	1.907	5.87+000	5.90+000	-0.5
76.067	1.877	5.97+000	5.96+000	0.1
77.934	1.859	6.02+000	6.01+000	0.2
79.784	1.841	6.08+000	6.07+000	0.2
81.619	1.830	6.12+000	6.12+000	-0.0
83.447	1.824	6.14+000	6.17+000	-0.5
THERMAL CONDU	CTIVITY DATA	FOR HASTELLOY X	19 JAN 68 400	PM
MEAN	TEMPERATURE	OBSERVED	CALCULATED	PERCENT
TEMPERATURE		THERMAL	THERMAL	DEVIATION
		CONDUCTIVITY	CONDUCTIVITY	
85.200	2.317	6.24+000	6.21+000	0.5
87.524	2.329	6.21+000	6.27+000	-0.9
89.832	2.287	6.33+000	6.33+000	-0.0
92.109	2.268	6.38+000	6.38+000	-0.0
94.364	2.243	6.45+000	6.44+000	0.2
96.601	2.231	6.48+000	6.49+000	-0.0
98.829	2.223	6.51+000	6.54+000	-0.4
THERMAL COND	UCTIVITY DATA	FOR HASTELLOY X	20 JAN 68 500	PM
MEAN	TEMPERATURE	OBSERVED	CALCULATED	PERCENT
TEMPERATURE	DIFFERENCE	THERMAL	THERMAL	DEVIATION
		CONDUCTIVITY	CONDUCTIVITY	
105.599	6.014	6.73+000	6.68+000	0.8
111.601	5.989	6.76+000	6.80+000	-0.5
117.515	5.839	6.93+000	6.92+000	0.3
123.310	5.752	7.04+000	7.03+000	0.2
129.012	5.651	7.17+000	7.13+000	0.4
134.630	5.584	7.25+000	7.24+000	0.2
140.187	5.532	7.32+000	7.34+000	-0.3

Table 30 (Cont.)

MEAN	TEMPERATURE	FOR HASTELLOY X OBSERVED	CALCULATED	PERCENT
TEMPERATURE	DIFFERENCE	THERMAL	THERMAL	DEVIATION
		CONDUCTIVITY	CONDUCTIVITY	
147.967	10.377	7.60+000	7.49+000	1.4
158.321	10.331	7.63+000	7.68+000	-0.7
168.487	10.000	7.88+000	7.88+000	0.1
178.375	9.777	8.07+000	8.07+000	-0.1
188.044	9.560	8.25+000	8.27+000	-0.2
197.526	9.404	8.39+000	8.46+000	-0.9
206.862	9.267	8.51+000	8.65+000	-1.7
THERMAL CONDI	UCTIVITY DATA	FOR HASTELLOY X	22 JAN 68 145	PM
MEAN	TEMPERATURE	OBSERVED	CALCULATED	PERCENT
TEMPERATURE		THERMAL	THERMAL	DEVIATION
		CONDUCTIVITY	CONDUCTIVITY	
148.012	10.380	7.60+000	7.49+000	1.4
158.367	10.331	7.63+000	7.69+000	-0.7
168.530	9.994	7.89+000	7.88+000	0.1
178.419	9.783	8.06+000	8.08+000	-0.2
188.092	9.563	8.24+000	8.27+000	-0.3
197.576	9.405	8.38+000	8.46+000	-0.9
206.913	9.270	8.51+000	8.65+000	-1.8
THERMAL COND	ICTIVITY DATA	FOR HASTELLOY X	31 JAN 68 340	PM
MEAN	TEMPERATURE	OBSERVED	CALCULATED	PERCENT
TEMPERATURE		THERMAL	THERMAL	DEVIATION
LIN LINATURE	P. I E E. III	CONDUCTIVITY	CONDUCTIVITY	
205.197	2.651	8.84+000	8.62+000	2.5
207.873	2.701	8.68+000	8.67+000	0.0
210.556	2.665	8.79+000	8.73+000	0.7
213.218	2.659	8.82+000	8.78+000	0.3
215.867	2.640	8.88+000	8.84+000	0.4
218.512	2.650	8.84+000	8.90+000	-0.6
221.163	2.653	8.83+000	8.95+000	-1.3
221.165	2.000	5.65,000	6.957000	-1.0

Table 30 (Cont.)

THERMAL CONDU MEAN TEMPERATURE	CTIVITY DATA TEMPERATURE DIFFERENCE	FOR HASTELLOY X OBSERVED THERMAL CONDUCTIVITY	1 FEB 68 1220PM CALCULATED THERMAL CONDUCTIVITY	PERCENT DEVIATION
254.091	10.022	9.89+000	9.63+000	2.6
264.159	10.115	9.80+000	9.82+000	-0.3
274.150	9.867	1.00+001	1.00+001	. 0.3
283.927	9.687	1.02+001	1.02+001	0.4
293.528	9.516	1.04+001	1.03+001	0.6
303.032	9.491	1.04+001	1.05+001	-0.5
312.484	9.414	1.05+001	1.06+001	-1.0

Table 31 Electrical resistivity deviations of Hastelloy X

MEAN	TEMPERATURE	OBSERVED	CALCULATED	PERCENT	INTRINSIC
TEMPERATURE	RANGE	RESISTANCE	RESISTANCE	DEVIATION	RESISTANCE
10.182	3.613	1.934-003	1.954-003	0.00	2.797-006
15.465	6.218	1.932-003	1.932-003	-0.01	8.971-007
22.861	9.873	1.931-003	1.931-003	0.00	3.971-007
7.171	2.196	1.936-003	1.935-003	0.00	4.597-006
26.439	4.397	1.931-003	1.931-003	-0.00	4.971-007
39.102	13.790	1.934-003	1.934-003	0.00	2.897-006
61.926	27.579	1.941-003	1.941-003	0.00	1.050-005
22.971	2.385	1.931-003	1.931-003	-0.00	2.971-007
31.526	8.518	1.932-003	1.932-003	0.00	1.197-006
77.899	13.038	1.948-003	1.948-003	-0.00	1.690-005
92.065	15.899	1.954-003	1.954-003	0.00	2.320-005
123.121	40.361	1.968-003	1.968-003	0.01	3.750-005
177.939	68.717	1.994-003	1.993-003	0.00	6.260-005
177.986	68.726	1.993-003	1.993-003	-0.00	6.250-005
213.198	18.619	2.009-003	2.009-003	-0.01	7.810-005
283.624	68.111	2.038-003	2.038-003	0.00	1.075-004
75.986	0.000	1.947-003	1.947-003	-0.01	1.590-005
4.051	0.000	1.938-003	1.938-003	-0.00	7.297-006
20.246	0.000	1.931-003	1.931-003	0.00	3.971-007

Table 32 Thermovoltage deviations of Hastelloy X

UPPER TEMPERATURE	LONER	OBSERVED THERMOVOLTAGE	CALCULATED	DEVIATION
	8.263	-0.26	-0.27	0.01
11.875	12.164	-1.02	-1.01	-0.01
18.382		-3.54	-3.56	0.02
27.520	17.648	-0.12	-0.12	-0.00
8.202	6.006		-2.05	-0.01
28.591	24.194	-2.06	-9.64	0.01
45.765	31.975	-9.63		-0.03
75.266	47.687	-22.44	-22.41	-0.03
24.145	21.760	-0.92	-0.89	
35.660	27.142	-4.94	-4.94	0.00
84.359	71.321	-10.35	-10.41	0.06
99.940	84.042	-12.04	-12.09	0.05
142.953	102.592	-27.40	-27.35	-0.05
211.495	142.778	-39.52	-39.54	0.02
211.548	142.822	-39.52	-39.54	0.02
	203.871	-9.94	-9.87	-0.07
222.490 317.191	249.080	-33.48	-33.48	0.00
01.11.1				

Table 33 Thermal conductivity deviations of Be

MEAN TEMPERATURE	DIFFERENCE	FOR BE 22 MAR 68 OBSERVED THERMAL	CALCULATED THERMAL	PERCENT
		CONDUCTIVITY	CONDUCTIVITY	
116.469	9.032	2.75+002	2.72+002	1.0
125.533	9.095	2.73+002	2.75+002	-0.9
134.589	9.016	2.76+002	2.76+002	0.0
143.668	9.142	2.72+002	2.74+002	-0.8
152.827	9.176	2.70+002	2.71+002	-0.1
162.112	9.394	2.64+002	2.66+002	-0.9
THERMAL CONDUC	TIVITY DATA	FOR BE 22 MAR 68	430PM	
MEAN	TEMPERATURE	OBSERVED	CALCULATED	PERCENT
TEMPERATURE	DIFFERENCE	THERMAL	THERMAL	DEVIATION
		CONDUCTIVITY	CONDUCTIVITY	
142.242	14.499	2.77+002	2.74+002	0.9
157.010	15.038	2.66+002	2.69+002	-0.9
172.214	15.370	2.61+002	2.61+002	0.0
187.902	16.007	2.51+002	2.52+002	-0.4
204.196	16.581	2.42+002	2.42+002	-0.1
221.216	17.458	2.30+002	2.32+002	-1.0
THERMAL CONDUC	CTIVITY DATA	FOR BE 22 MAR 68	1030PM	
	TEMPERATURE	OBSERVED	CALCULATED	PERCENT
TEMPERATURE	DIFFERENCE	THERMAL	THERMAL	DEVIATION
		CONDUCTIVITY	CONDUCTIVITY	
142.099	14.384	2.79+002	2.74+002	1.6
156.745	14.908	2.69+002	2.69+002	-0.1
171.812	15.226	2.64+002	2.61+002	0.9
187.358	15.867	2.53+002	2.52+002	0.3
203.510	16.438	2.44+002	2.42+002	0.6
220.390	17.323	2.31+002	2.32+002	-0.4

Table 33 (Cont.)

THERMAL CONDUMEAN TEMPERATURE 65.310 65.810 66.308 66.804 67.296 67.783	TEMPERATURE	FOR BE 23 MAR 68 OBSERVED THERMAL CONDUCTIVITY 1.89+002 1.87+002 1.90+002 1.89+002 1.92+002 1.93+002	1230 PM CALCULATED THERMAL CONDUCTIVITY 1.87+002 1.88+002 1.90+002 1.91+002 1.92+002 1.93+002	PERCENT DEVIATION 1.1 -0.7 0.1 -0.9 0.1 -0.4
THERMAL CONDI	ICTIVITY DATA	FOR BE 23 MAR 68	630 PM	
MEAN TEMPERATURE	TEMPERATURE	OBSERVED THERMAL	CALCULATED THERMAL	PERCENT DEVIATION
		CONDUCTIVITY	CONDUCTIVITY	
69.385	1.163	2.00+002	1.98+002	1.3
70.551	1.169	1.99+002	2.01+002	-0.7
71.706	1.142	2.04+002	2.04+002	0.2
72.846	1.136	2.05+002	2.06+002	-0.7
73.969	1.109	2.10+002	2.09+002	0.3
75.074	1.102	2.11+002	2.12+002	-0.3
		FOR BE 23 MAR 68		
MEAN	TEMPERATURE	OBSERVED	CALCULATED	PERCENT
TEMPERATURE	DIFFERENCE	THERMAL	THERMAL	DEVIATION
		CONDUCTIVITY	CONDUCTIVITY	
75.297	1.869	2.15+002	2.12+002	1.3
77.167	1.870	2.15+002	2.17+002	-0.9
79.011	1.818	2.22+002	2.21+002	0.1
80.820	1.800	2.24+002	2.25+002	-0.7
82.596	1.751	2.30+002	2.29+002	0.3
84.339	1.735	2.32+002	2.35+002	-0.4

Table 33 (Cont.)

THERMAL CONDUMEAN TEMPERATURE	TEMPERATURE	FOR BE 24 MAR 68 OBSERVED THERMAL CONDUCTIVITY	450PM CALCULATED THERMAL CONDUCTIVITY	PERCENT DEVIATION
83.368	0.904	2.34.002	2.31+002	1.3
	0.917	2.30+002	2.33+002	-1.0
84.278	0.899	2.35+002	2.34+002	0.3
85.186			2.36+002	-0.6
86.087	0.901	2.35+002		
86.980	0.886	2.39+002	2.38+002	0.2
87.865	0.884	2.39+002	2.40+002	-0.3
THERMAL CONDU	ICTIVITY DATA	FOR BE 25 MAR 68	120 PM	
MEAN	TEMPERATURE	OBSERVED	CALCULATED	PERCENT
TEMPERATURE		THERMAL	THERMAL	DEVIATION
TEM ENAIGNE	P I I I LINE I I I	CONDUCTIVITY	CONDUCTIVITY	
86.678	2.304	2.40+002	2.37+002	1.1
88.981	2.302	2.40+002	2.42+002	-0.6
91.255	2.247	2.46+002	2.46+002	0.3
93.496	2.235	2.48+002	2.49+002	-0.7
95.705	2.184	2.53+002	2.53+002	0.2
97.882	2.170	2.55+002	2.56+002	-0.3
THERMAL CONDU	UCTIVITY DATA	FOR BE 25 MAR 68		
MEAN	TEMPERATURE	OBSERVED	CALCULATED	PERCENT
TEMPERATURE	DIFFERENCE	THERMAL	THERMAL	DEVIATION
		CONDUCTIVITY	CONDUCTIVITY	
101.258	2.999	2.63+002	2.60+002	1.3
104.271	3.027	2.61+002	2.63+002	-1.0
107.266	2.963	2.67+002	2.66+002	0.2
110.225	2.955	2.67+002	2.68+002	-0.4
113.159	2.913	2.71+002	2.70+002	0.2
116.070	2.909	2.71+002	2.72+002	-0.3

Table 33 (Cont.)

THERMAL CONDUMEAN TEMPERATURE	TEMPERATURE DIFFERENCE	FOR BE 26 MAR 68 OBSERVED THERMAL CONDUCTIVITY	1130 AM CALCULATED THERMAL CONDUCTIVITY	PERCENT DEVIATION
101.250	2.999	2.63+002	2.60+002	1.3
104.263	3.027	2.61+002	2.63+002	-1.0
107.258	2.962	2.67+002	2.66+002	0.2
110.216	2.955	2.67+002	2.68+002	-0.4
113.149	2.912	2.71+002	2.70+002	0.2
116.062	2.912	2.71+002	2.72+002	-0.4
THERMAL CONDI	ICTIVITY DATA	FOR BE 10 APR 6	R 350PM	
MEAN	TEMPERATURE	OBSERVED	CALCULATED	PERCENT
TEMPERATURE		THERMAL	THERMAL	DEVIATION
TETTERATURE	DITT ENLINCE	CONDUCTIVITY	CONDUCTIVITY	
204.012	1.552	2.45+002	2.42+002	1.0
205.583	1.589	2.39+002	2.41+002	-1.0
207.164	1.575	2.41+002	2.40+002	0.5
208.747	1.590	2.39+002	2.39+002	-0.2
210.336	1.588	2.39+002	2.38+002	0.3
211.936	1.611	2.36+002	2.37+002	-0.7
THERMAL CONDI	ICTIVITY DATA	FOR BE 11 APR 68	1130 AM	
MEAN COND	TEMPERATURE	OBSERVED	CALCULATED	PERCENT
TEMPERATURE		THERMAL	THERMAL	DEVIATION
TETT ENATORE	DITTERENCE	CONDUCTIVITY	CONDUCTIVITY	
231.389	10.379	2.29+002	2.26+002	1.3
241.988	10.820	2.20+002	2.20+002	-0.4
252.904	11.012	2.16+002	2.15+002	0.7
264.091	11.362	2.09+002	2.09+002	0.2
275.581	11.617	2.05+002	2.03+002	0.6
287.426	12.075	1.97+002	1.98+002	-0.5
				No. 200 See No. 200 No. 200

Table 33 (Cont.)

MEAN TEMPERATURE	TEMPERATURE DIFFERENCE	11 APR 68 545 OBSERVED THERMAL CONDUCTIVITY	CALCULATED THERMAL CONDUCTIVITY	PERCENT
213.900	5.638	2.38+002	2.36+002	0.9
219.623	5.808	2.31+002	2.33+002	-0.7
225.446	5.838	2.30+002	2.29+002	0.4
231.348	5.965	2.25+002	2.26+002	-0.3
237.342	6.024	2.23+002	2.23+002	0.1
243.447	6.186	2.17+002	2.20+002	-1.1

Table 34 Electrical resistivity deviations of Be

MEAN	TEMPERATURE	OBSERVED	CALCULATED	PERCENT	INTRINSIC
TEMPERATURE	RANGE	RESISTANCE	RESISTANCE	DEVIATION	RESISTANCE.
143.847	64.755	2.674-004	2.677-004	-0.09	9.037-005
189,158	113.814	3.974-004	3.969-004	0.12	2.203-004
188.609	112.843	3.956-004	3.950-004	0.15	2.185-004
66.798	3.465	1.771-004	1.771-004	0.01	1.532-008
72.817	7.950	1.790-004	1.791-004	-0.03	1.915-006
80.760	12.618	1.825-004	1.825-004	0.00	5.415-006
86.075	6.305	1.853-004	1.853-004	-0.00	8.215-006
93.439	15.669	1.907-004	1.905-004	0.06	1.357-005
110.178	20.725	2.072-004	2.073-004	-0.03	3.012-005
110.173	20.773	2.073-004	2.073-004	-0.01	3.017-005
208.764	11.173	4.523-004	4.532-004	-0.20	2.752-004
264.744	80.062	6.876-004	6.877-004	-0.02	5.105-004
231.552	41.927	5.422-004	5.420-004	0.03	3.651-004

Table 35 Thermovoltage deviations of Be

UPPER TEMPERATURE	LONER TEMPERATURE	OBSERVED THERMOVOLTAGE	CALCULATED	DEVIATION
176.708	111.953	-252.06	-252.02	-0.04
248.806	134.992	-337.16	-337.17	0.01
247.750	134.907	-335.25	-335.29	0.04
68.527	65.062	-14.94	-14.95	0.01
76.753	68.804	-35.70	-35.69	-0.01
86.980	74.362	-58.54	-58.54	0.00
89.220	82.916	-29.63	-29.66	0.03
101.195	85.526	-74.02	-73.98	-0.04
120.483	99.759	-95.22	-95.13	-0.09
120.524	99.751	-95.20	-95.34	0.14
214.409	203.236	-29.25	-29.05	-0.20
306.261	226.199	-155.65	-155.65	-0.00
253.008	211.081	-96.40	-96.39	-0.01

Table 36 Thermal conductivity deviations of PO-3 graphite

THERMAL CONDU	CTIVITY DATA	FOR GRAPHITE 20	SEPT 68 1230 PM	
MEAN	TEMPERATURE	OBSERVED	CALCULATED	PERCENT
TEMPERATURE		THERMAL	THERMAL	DEVIATION
. L L		CONDUCTIVITY	CONDUCTIVITY	
5.957	0.414	4.80-002	4.62-002	3.8
6.367	0.406	4.90-002	5.21-002	-6.1
6.741	0.342	5.82-002	5.82-002	0.1
7.065	0.307	6.49-002	6.41-002	1.3
7.357	0.276	7.20-002	6.99-v02	2.9
7.629	0.269	7.40-002	7.58-002	-2.4
7.890	0.252	7.90-002	8.18-002	-3.6
THERMAL CONDE	UCTIVITY DATA	FOR GRAPHITE 20	SEPT 68 235 PM	
MEAN	TEMPERATURE	OBSERVED	CALCULATED	PERCENT
TEMPERATURE		THERMAL	THERMAL	DEVIATION
		CONDUCTIVITY	CONDUCTIVITY	
8.343	0.647	9.83-002	9.32-002	5.1
8.954	0.576	1.10-001	1.11-001	-0.2
9.489	0.495	1.29-001	1.28-001	0.4
9.955	0.437	1.45-001	1.45-001	0.5
10.372	0.396	1.61-001	1.61-001	-0.0
10.754	0.568	1.73-001	1.77-001	-2.4
11.110	0.545	1.85-001	1.93-001	-5.8
THERMAL CONDU	CTIVITY DATA	FOR GRAPHITE 20	SEPT 68 625 PM	
MEAN	TEMPERATURE	OBSERVED	CALCULATED	PERCENT
TEMPERATURE	DIFFERENCE	THERMAL	THERMAL	DEVIATION
		CONDUCTIVITY	CONDUCTIVITY	
11.701	1.242	2.27-001	2.21-001	2.7
12.820	0.996	2.83-001	2.82-001	0.4
13.734	0.832	3.39-001	3.39-001	-0.0
14.506	0.711	3.97-001	3.92-001	1.0
15.179	0.636	4.43-001	4.43-001	0.0
15.787	0.578	4.87-001	4.92-001	-1.0
16.344	0.536	5.26-001	5.40-001	-2.6
				No. No. 240 No. 240 No.

Table 36 (Cont.)

THERMAL	CONDUCTIVIT	TY DATA FOR	GRAPHITE	20	SEPT 68 725 PM	
MEAN	TEMPE	RATURE	OBSERVED		CALCULATED	PERCENT
TEMPERAT	URE DIFFE	RENCE	THERMAL		THERMAL	DEVIATION
		C	ONDUCTIVI	TY	CONDUCTIVITY	
18.14	2 1	.865	7.25-001		7.13-001	1.6
19.82		.491	9.07-001		9.00-001	0.8
21.19		.257	1.08+000		1.07+000	0.4
22.36		.075	1.26+000		1.23+000	2.2
23.38		.974	1.39+000		1.38+000	0.6
24.31		.876	1.54+000		1.52+000	1.4
25.15		0.820	1.65+000		1.66+000	-0.7
THERMAL	CONDUCTIVIT	TY DATA FOR	GRAPHITE	23	SEPT 68 415 PM	
MEAN	TEMPE	RATURE	OBSERVED		CALCULATED	PERCENT
TEMPERAT	URE DIFFE	ERENCE	THERMAL		THERMAL	DEVIATION
		C	ONDUCTIVI	TY	CONDUCTIVITY	
23.36	0 0	.548	1.38+000		1.38+000	0.3
23.89	5 0	0.520	1.45+000		1.46+000	-0.3
24.40	1 0	0.492	1.54+000		1.54+000	0.1
24.87	9 0	.465	1.62+000		1.61+000	0.7
25.33	6 0	0.449	1.68+000		1.69+000	-0.3
25.77	7 0	0.434	1.74+000		1.76+000	-1.3
26.20	4 0	.419	1.81+000		1.84+000	-1.8
THERMAL.	CONDUCTIVIT	TY DATA FOR	GRAPHITE	24	SEPT 68 1040 AM	
MEAN		ERATURE	OBSERVED		CALCULATED	PERCENT
TEMPERAT	URE DIFFE	ERENCE	THERMAL		THERMAL	DEVIATION
		(ONDUCTIVI	TY	CONDUCTIVITY	
28.01		0.932	2.19+000		2.17+000	0.7
28.91		0.870	2.34+000		2.35+000	-0.2
29.75		0.806	2.53+000		2.52+000	0.4
30.53		0.755	2.70+000		2.68+000	0.7
31.26		0.714	2.85+000		2.84+000	0.5
31.96		0.684	2.98+000		2.99+000	-0.4
32.63	7 (0.656	3.10+000		3.14+000	-1.3

Table 36 (Cont.)

THERMAL CONDU	ICTIVITY DATA	FOR GRAPHITE 24	SEPT 68 240 PM	
MEAN	TEMPERATURE	OBSERVED	CALCULATED	PERCENT
TEMPERATURE		THERMAL	THERMAL	DEVIATION
EINERATORE		CONDUCTIVITY	CONDUCTIVITY	
36.828	1.715	4.19+000	4.18+000	0.2
38.469	1.566	4.58+000	4.62+000	-0.8
39.971	1.438	4.99+000	5.04+000	-1.0
41.348	1.316	5.45+000	5.44+000	0.2
42.619	1.226	5.85+000	5.82+000-	0.5
43.816	1.167	6.15+000	6:19+000	-0.7
44.955	1.111	6.46+000	6.55+000	-1.4
THERMAL COND	UCTIVITY DATA	FOR GRAPHITE 24	SEPT 68 510 PM	
MEAN	TEMPERATURE		CALCULATED	PERCENT
TEMPERATURE		THERMAL	THERMAL	DEVIATION
		CONDUCTIVITY	CONDUCTIVITY	
54.285	3.166	9.84+000	9.79+000	0.5
57.300	2.864	1.09+001	1.09+001	-0.5
60.030	2.596	1.20+001	1.20+001	-0.0
62.514	2.372	1.31+001	1.30+001	1.1
64.805	2.211	1.41+001	1.39+001	1.1
66.961	2.100	1.48+001	1.48+001	0.0
69.014	2.008	1.55+001	1.57+00.1	-1.1
THERMAL COND	UCTIVITY DATA	FOR GRAPHITE 16	SEPT 68 1045 PM	1
MEAN	TEMPERATURE		CALCULATED	PERCENT
TEMPERATURE	DIFFERENCE	THERMAL	THERMAL	DEVIATION
		CONDUCTIVITY	CONDUCTIVITY	
85.570	0.792	2.32+001	2.29+001	1.0
86.364	0.796	2.31+001	2.33+001	-1.1
87.147	0.769	2.38+001	2.36+001	0.9
87.912	0.761	2.41+001	2.40+001	0.5
88.665	0.746	2.46+001	2.43+001	1.1
89.410	0.744	2.47+001	2.47+001	0.1
90.153	0.742	2.47+001	2.50+001	-1.1

Table 36 (Cont.)

THERMAL COND	UCTIVITY DATA	FOR GRAPHITE 17	SEPT 68 115 PM	
MEAN	TEMPERATURE	OBSERVED	CALCULATED	PERCENT
TEMPERATURE	DIFFERENCE	THERMAL	THERMAL	DEVIATION
		CONDUCTIVITY	CONDUCTIVITY	
93.808	1.289	2.68+001	2.66+001	0.8
95.098	1.291	2.68+001	2.72+001	-1.5
96.363	1.239	2.79+001	2.78+001	0.6
97.590	1.216	2.85+001	2.83+001	0.5
98.792	1.188	2.91+001	2.88+001	1.0
99.975	1.178	2.94+001	2.94+001	0.0
101.149	1.172	2.95+001	2.99+001	-1.2
THERMAL COND	UCTIVITY DATA	FOR GRAPHITE 18	SEPT 68 925 AM	
MEAN	TEMPERATURE	OBSERVED	CALCULATED	PERCENT
TEMPERATURE	DIFFERENCE	THERMAL	THERMAL	DEVIATION
		CONDUCTIVITY	CONDUCTIVITY	
115.281	2.292	3.64+001	3.60+001	1.1
117.577	2.301	3.63+001	3.70+001	-2.0
119.822	2.189	3.82+001	3.80+001.	0.5
121.986	2.139	3.91+001	3.89+001	0.5
124.096	2.082	4.01+001	3.97+001	1.0
126.166	2.058	4.06+001	4.06+001	-0.0
128.217	2.043	4.09+001	4.14+001	-1.3
THERMAL COND	UCTIVITY DATA	FOR GRAPHITE 18	SEPT 68 745 PM	
MEAN	TEMPERATURE	OBSERVED	CALCULATED	PERCENT
TEMPERATURE	DIFFERENCE	THERMAL	THERMAL	DEVIATION
		CONDUCTIVITY	CONDUCTIVITY	
159.441	4.497	5.41+001	5.30+001	2.1
163.973	4.566	5.33+001	5.45+001	-2.3
168.430	4.348	5.60+001	5.59+001	0.0
172.717	4.225	5.76+001	5.73+001	0.6
176.890	4.121	5.91+001	5.85+001	0.9
180.993	4.085	5.96+001	5.97+001	-0.3
185.066	4.060	5.99+001	6.09+001	-1.6

Table 36 (Cont.)

THERMAL CONDU	CTIVITY DATA	FOR GRAPHITE 19	SEPT 68 1030 AM	
MEAN	TEMPERATURE	OBSERVED	CALCULATED	PERCENT
TEMPERATURE	DIFFERENCE	THERMAL	THERMAL	DEVIATION
		CONDUCTIVITY	CONDUCTIVITY	
137.785	2.402	4.59+001	4.52+001	1.4
140.215	2.458	4.48+001	4.61+001	-2.9
142.610	2.334	4.72+001	4.70+001	0.3
144.921	2.287	4.82+001	4.79+001	0.6
147.184	2.239	4.92+001	4.87+001	1.0
149.416	2.225	4.95+001	4.95+001	-0.0
151.640	2.223	4.96+001	5.03+001	-1.5
THERMAL CONDU	OCTIVITY DATA	FOR GRAPHITE 13	SEPT 68 220 PM	
MEAN	TEMPERATURE	OBSERVED	CALCULATED	PERCENT
TEMPERATURE	DIFFERENCE	THERMAL	THERMAL	DEVIATION
		CONDUCTIVITY	CONDUCTIVITY	
212.231	1.143	6.94+001	6.76+001	2.7
213.403	1.201	6.61+001	6.78+001	-2.7
214.581	1.157	6.86+001	6.81+001	0.7
215.740	1.159	6.84+001	6.83+001	0.1
216.893	1.147	6.91+001	6.86+001	0.8
218.046	1.159	6.84+001	6.88+001	-0.6
219.210	1.169	6.79+001	6.90+001	
THERMAL CONDI	UCTIVITY DATA	FOR GRAPHITE 13	SEPT 68 555 PM	
MEAN	TEMPERATURE		CALCULATED	PERCENT
TEMPERATURE	DIFFERENCE	THERMAL	THERMAL	DEVIATION
		CONDUCTIVITY	CONDUCTIVITY	
229.677	2.191	7.31+001	7.10+001	2.9
231.923	2.301	6.96+001	7.14+001	-2.6
234.183	2.219	7.22+001	7.18+001	0.6
236.401	2.217	7.23+001	7.22+001	0.2
238.607	2.194	7.30+001	7.25+001	0.7
240.811	2.214	7.24+001	7.29+001	-0.7
243.032	2.229	7.19+001	7.32+001	-1.8

Table 36 (Cont.)

THERMAL CONDU	CTIVITY DATA	FOR GRAPHITE 14	SEPT 68 1155 PM	
MEAN	TEMPERATURE	OBSERVED	CALCULATED	PERCENT
TEMPERATURE	DIFFERENCE	THERMAL	THERMAL	DEVIATION
I EIII EINNI CINE		CONDUCTIVITY	CONDUCTIVITY	
274.179	4.992	8.02+001	7.68+001	4.2
279.287	5.225	7.66+001	7.72+001	-0.8
	5.090	7.86+001	7.75+001	1.4
284.445	5.106	7.84+001	7.78+001	0.7
289.543	5.087	7.87+001	7.81+001	0.7
294.640	5.162	7.75+001	7.83+001	-1.0
299.765		7.69+001	7.84+001	-1.9
304.946	5.201	7.697001	,	
			THE REAL PROPERTY AND ADDRESS OF THE REAL PROPERTY AND ADDRESS OF THE PERTY	
THE DAME CONDI	CTIVITY DATA	FOR GRAPHITE 15	SEPT 68 230 PM	
		FOR GRAPHITE 15	SEPT 68 230 PM CALCULATED	PERCENT
MEAN	TEMPERATURE	OBSERVED	CALCULATED	PERCENT DEVIATION
		OBSERVED THERMAL	CALCULATED	
MEAN TEMPERATURE	TEMPERATURE DIFFERENCE	OBSERVED THERMAL CONDUCTIVITY	CALCULATED THERMAL CONDUCTIVITY	DEVIATION
MEAN TEMPERATURE 247.484	TEMPERATURE DIFFERENCE 3.579	OBSERVED THERMAL CONDUCTIVITY 7.60+001	CALCULATED THERMAL CONDUCTIVITY 7.38+001	DEVIATION 2.9
MEAN TEMPERATURE 247.484 251.147	TEMPERATURE DIFFERENCE 3.579 3.747	OBSERVED THERMAL CONDUCTIVITY 7.60+001 7.26+001	CALCULATED THERMAL CONDUCTIVITY 7.38+001 7.43+001	2.9 -2.4
MEAN TEMPERATURE 247.484 251.147 254.836	TEMPERATURE DIFFERENCE 3.579 3.747 3.631	OBSERVED THERMAL CONDUCTIVITY 7.60+001 7.26+001 7.49+001	CALCULATED THERMAL CONDUCTIVITY 7.38+001 7.43+001 7.48+001	2.9 -2.4 0.2
MEAN TEMPERATURE 247.484 251.147 254.836 258.459	TEMPERATURE DIFFERENCE 3.579 3.747 3.631 3.614	OBSERVED THERMAL CONDUCTIVITY 7.60+001 7.26+001 7.49+001 7.53+001	CALCULATED THERMAL CONDUCTIVITY 7.38+001 7.43+001 7.48+001 7.52+001	2.9 -2.4 0.2 0.1
MEAN TEMPERATURE 247.484 251.147 254.836 258.459	TEMPERATURE DIFFERENCE 3.579 3.747 3.631	OBSERVED THERMAL CONDUCTIVITY 7.60+001 7.26+001 7.49+001 7.53+001 7.61+001	CALCULATED THERMAL CONDUCTIVITY 7.38+001 7.43+001 7.48+001 7.52+001 7.56+001	2.9 -2.4 0.2 0.1 0.6
MEAN TEMPERATURE 247.484 251.147 254.836 258.459 262.054	TEMPERATURE DIFFERENCE 3.579 3.747 3.631 3.614	OBSERVED THERMAL CONDUCTIVITY 7.60+001 7.26+001 7.49+001 7.53+001 7.61+001 7.54+001	CALCULATED THERMAL CONDUCTIVITY 7.38+001 7.43+001 7.48+001 7.52+001 7.56+001 7.60+001	2.9 -2.4 0.2 0.1 0.6 -0.9
MEAN TEMPERATURE 247.484 251.147 254.836 258.459	3.579 3.747 3.631 3.614 3.576	OBSERVED THERMAL CONDUCTIVITY 7.60+001 7.26+001 7.49+001 7.53+001 7.61+001	CALCULATED THERMAL CONDUCTIVITY 7.38+001 7.43+001 7.48+001 7.52+001 7.56+001	2.9 -2.4 0.2 0.1 0.6

Table 37 Electrical resistivity deviations of PO-3 graphite

ME.AN	TEMPERATURE	OBSERVED	CALCULATED	PERCENT	INTRINSIC
TEMPERATURE	RANGE	RESISTANCE	RESISTANCE	DEVIATION	RESISTANCE
7.001	2.265	5.128-002	5.129-002	-0.03	5.128-002
9.854	3.263	5.111-002	5.110-002	0.02	5.111-002
14.296	5.532	5.077-002	5.077-002	0.01	5.077-002
22.053	8.358	5.008-002	5.011-002	-0.06	5.008-002
24.836	3.327	4.983-002	4.986-002	-0.05	4.983-002
30.441	5.417	4.927-002	4.930-002	-0.07	4.927-002
41.144	9.540	4.815-002	4.818-002	-0.06	4.815-002
62.130	17.316	4.590-002	4.592-002	-0.03	4.590-002
87.889	5.349	4.327-002	4.327-002	-0.02	4.327-002
97.539	8.571	4.234-002	4.235-002	-0.01	4.234-002
121.878	15.103	4.016-002	4.016-002	-0.00	4.016-002
172.501	29.903	3.625-002	3.626-002	-0.03	3.625-002
144.824	16.167	3.829-002	3.829-002	-0.00	3.829-002
215.729	8.135	3.351-002	3.351-002	0.02	3.351-002
236.376	15.565	3.235-002	3.235-002	-0.01	3.235-002
289.544	35.864	2.979-002	2.979-002	0.00	2.979-002
258.414	25.390	3.122-002	3.123-002	-0.01	3.122-002
4.353	0.000	5.139-002	5.139-002	0.01	5.139-002
7.456	0.000	5.126-002	5.126-002	0.00	5.126-002
19.377	0.000	5.035-002	5.036-002	-0.02	5.035-002
20.267	0.000	5.031-002	5.028-002	0.05	5.031-002
22.659	0.000	5.009-002	5.006-002	0.05	5.009-002
26.296	0.000	4.974-002	4.972-002	0.04	4.974-002
33.642	0.000	4.899-002	4.897-002	0.04	4.899-002
43.452	0.000	4.796-002	4.793-002	0.06	4.796-002
76.539	0.000	4.445-002	4.441-002	0.09	4.445-002
80.589	0.000	4.399-002	4.400-002	-0.02	4.399-002
85.939	0.000	4.346-002	4.347-002	-0.01	4.346-002
98.669	0.000	4.224-002	4.224-002	-0.00	4.224-002
118.103	0.000	4.049-002	4.048-002	0.01	4.049-002
	0.000	3.502-002	3.503-002	-0.03	3.502-002
190.777	0.000	3.444-002	3.443-002	0.04	3.444-002
200.376			3.238-002	0.00	3.238-002
235.941	0.000	3.238-002	3.236-002	0.00	0.L.00 VVL

Table 38 Thermovoltage deviations of PO-3graphite

UPPER	LOWER	OBSERVED THERMOVOLTAGE	CALCULATED	DEVIATION
The control of the co	5.750	-3.42	-3.40	-0.02
8.016				
11.281	8.019	-6.68	-6.69	0.01
16.611	11.080	-15.59	-15.62	0.03
25.567	17.210	-32.62	-32.59	-0.03
26.413	23.086	-14.18	-14.13	-0.05
32.965	27.548	-24.88	-24.85	-0.03
45.510	35.970	-45.59	-45.71	0.12
70.018	52.702	-77.88	-77.80	-0.08
90.524	85.175	-20.76	-20.80	0.04
101.735	93.164	-31.56	-31.59	0.03
129.238	114.135	-48.76	-48.77	0.01
187.096	157.193	-73.10	-73.04	-0.06
152.751	136.584	-45.96	-46.04	0.08
219.795	211.660	-15.44	-15.40	-0.04
244.146	228.581	-26.15	-26.16	0.01
307.547	271.683	-46.35	-46.33	-0.02
271.084	245.695	-37.79	-37.85	0.0€

Table 39 Transport properties of Ti Allo-AT

	Thermal	Electrical	Lorenz	Thermo-
Temp	Conductivity			power
	(Wm ⁻¹ K ⁻¹)			
(K)	(Wm -K -)	(µ ohm m)	(V_S/K_S)	(µV/K)
_	A 666	1 700	12.64	^ *^
6	0.555	1.366	12.60	-0.30
	0.662	1.365	12.90	-0.35
8	0.773	1.365	13.20	-0.39
	0.885	1.365	13.40	-0.45
10	0.996	1.365	13.60	-0.50
12	1.210	1.365	13.80	-0.58
14	1.410	1.364	13.80	-0.67
16	1.600	1.364	13.70	-0.78
18	1.780	1.364	13.50	-0.89
20	1.950	1.364	13.30	-1.03
25	2.320	1.364	12.70	-1.38
30	2.640	1.364	12.00	-1.72
35	2.920	1.366	11.40	-2.03
40	3.170	1.368	10.80	-2.30
45	3.390	1.371	10.30	-2.54
50	3.590	1.375	9.86	-2.76
55	3.760	1.379	9.43	-2.95
60	3.920	1.383	9.04	-3.11
65	4.070	1.388	8.69	-3.26
70	4.200	1.393	8.36	-3.39
75	4.320	1.398	8.06	-3.51
80	4.440	1.404	7.78	-3.62
85	4.540	1.409	7.53	-3.72
90	4.640	1.415	7.30	-3.82
95	4.740	1.421	7.08	-3.91
100	4.830	1.426	6.89	-3.99
110	5.000	1.438	6.54	-4.16
120	5.170	1.450	6.25	-4.31
130	5.330	1.461	6.00	-4.46
140	5.500	1.473	5.78	-4.61
150	5.660	1.484	5.60	-4.77
160	5.830	1.495	5.45	-4.92
170	6.000	1.506	5.32	-5.07
180	6.170	1.517	5.20	-5.22
190	6.350	1.528	5.11	-5.38
200	6.530	1.538	5.02	-5.53
220	6.890	1.559	4.88	-5.83
240	7.240	1.579	4.76	-6.12
260	7.580	1.598	4.66	
280	7.900	1.617	4.56	-6.40
300	8.170	1.636	4.45	-6.66
500	0.170	1.030	4.45	-6.90

Table 40 Transport properties of At 7039

	Thermal	Electrical	Lorenz	Thermo-
Temp	Conductivity	Resistivity	ratio x 10 ⁸	power
(K)	$(Wm^{-1}K^{-1})$	(µ ohm m)	$(\Lambda_{\rm S}/\rmK_{\rm S})$	(uV/K)
		1,6	, , , , , ,	(12.1.2.2)
6	8.6	0.01734	2.47	-0.13
6 7 8 9	10.1	0.01736	2.50	-0.15
8	11.6	0.01737	2.51	-0.17
9	13.1	0.01736	2.52	-0.19
10	14.5	0.01735	2.52	-0.20
12	17.4	0.01734	2.52	-0.21
14	20.4	0.01734	2.52	-0.23
16	23.3	0.01735	2.53	-0.27
18	26.2	0.01736	2.53	-0.33
20	29.2	0.01737	2.53	-0.41
25	36.3	0.01742	2.53	-0.65
30	43.1	0.01748	2.51	
35	49.5	0.01759	2.49	-0.68
40	55.3	0.01775	2.45	-1.09
45	60.6	0.01795	2.42	-1.26
50	65.4	0.01821	2.38	-1.41
55	69.7	0.01852	2.35	-1.53
60	73.6	0.01887	2.31	-1.62
65	77.1	0.01926	2.29	-1.69 -1.74
70	80.3	0.01970	2.26	-1.78
75	83.3	0.02016	2.24	-1.81
80	86.0	0.02065	2.22	-1.82
85	88.5	0.02117	2.21	-1.83
90	90.9	0.02171	2.19	-1.83
95	95.1	0.02227	2.18	-1.83
100	95.2	0.02284	2.18	-1.82
110	99.2	0.02402	2.17	-1.80
120	103.0	0.02524	2.17	-1.78
130	107.0	0.02648	2.17	-1.75
140	110.0	0.02773	2.18	-1.72
150	114.0	0.02898	2.20	-1.70
160	117.0	0.03024	2.21	-1.68
170	121.0	0.03149	2.24	-1.66
180	124.0	0.03274	2.26	-1.65
190	128.0	0.03398	2.28	-1.64
200	131.0	0.03522	2.31	-1.63
220	138.0	0.03768	2.36	-1.62
240	144.0	0.04012	2,40	-1.62
260	149.0	0.04255	2.44	-1.62
280	154.0	0.04499	2.47	-1.63
-		0.04400	2.41	1.05

Table 41 Transport properties of Inconel 718

Temp (K)	Thermal Conductivity (Wm ⁻¹ K ⁻¹)	Electrical Resistivity (µ ohm m)	Lorenz ratio x 10 ⁸ (V ² /K ²)	Thermo- power (uV/K)
7 8 9 10 12 14 16 18 22 3 3 5 40 5 5 5 6 6 5 7 7 5 8 5 9 5 10 10 12 10 10 10 10 10 10 10 10 10 10 10 10 10	0.670 0.801 0.938 1.080 1.360 1.630 1.900 2.160 2.400 2.970 3.480 3.940 4.350 4.720 5.050 5.620 5.620 5.620 5.620 5.620 5.620 6.640 6.800 6.950 7.090 7.340 7.580 7.090 7.340 7.580 7.580 7.090 7.340 7.580 7.090 7.340 7.350 8.660 8.660 8.660 8.660 8.750 8.660 8.750 8.750 8.660 8.750 8.	1.080 1.079 1.079 1.078 1.078 1.077 1.077 1.077 1.076 1.076 1.076 1.077 1.078 1.079 1.080 1.081 1.082 1.085 1.085 1.085 1.085 1.087 1.089 1.090 1.090 1.090 1.100 1.100 1.100 1.100 1.100 1.101 1.100	10.30 10.80 11.20 11.60 12.20 12.60 12.90 12.90 12.90 12.90 12.90 12.90 12.90 12.90 12.90 12.90 12.90 12.50 10.10 9.75 9.41 9.08 8.77 8.49 8.22 7.96 7.73 7.30 6.32 6.60 6.60 6.60 6.60 6.60 6.60 6.60 6.6	0.12 0.13 0.14 0.20 0.26 0.30 0.32 0.32 0.32 0.32 0.19 0.19 0.19 0.19 0.21 0.25 0.26 0.29 0.35 0.35 0.35 0.42 0.45 0.60 0.67 0.74 0.81 0.95 1.02 1.08 1.15 1.27 1.39
260 280	10.900	1.139	4.61	1.51

Table 42 Transport properties of Hastelloy X

	Thermal	Electrical	Lorenz	Thermo-
Temp	Conductivity	Resistivity	ratio x 108	power
(K)	$(Wm^{-1}K^{-1})$	(u ohm m)	(V2/K2)	(uV/K)
1/	, ,	(m	, , , , , ,	(1.01) 22)
7	0.946	1.089	14.70	-0.04
8	1.110	1.089	15.10	-0.04
9	1.270	1.088	15.30	-0.05
10	1.430	1.088	15.50	-0.04
12	1.730	1.087	15.70	-0.01
14	2.010	1.087	15.60	0.02
16	2.270	1.087	15.40	0.04
18	2.510	1.087	15.10	0.04
20	2.750	1.087	14.80	0.02
25	3.230	1.087	14.10	-0.06
30	3.670	1.087	13.30	-0.14
35	4.050	1.087	12.60	-0.20
40	4.380	1.088	11.90	-0.25
45	4.680	1.089	11.30	-0.29
50	4.950	1.090	10.80	-0.32
55	5.190	1.091	10.30	-0.33
60	5.400	1.092	9.83	-0.34
65	5.590	1.093	9.41	-0.34
70	5.770	1.094	9.02	-0.33
75	5.930	1.095	8.66	-0.32
80	6.070	1.096	8.32	-0.31
85	6.210	1.098	8.02	-0.29
90	6.330	1.099	7.73	-0.27
95	6.450	1.100	7.47	-0.25
100	6.560	1.101	7.23	-0.22
110	6.770	1.104	6.79	-0.18
120	6.960	1.107	6.42	-0.12
130	7.150	1.109	6.10	-0.06
140	7.340	1.112	5.83	-0.00
150		1.114	5.59	0.05
160	7.720	1.117	5.39	0.11
170	7.910	1.120	5.21	0.16
180	8.110	1.122	5.05	0.22
190	8.310	1.125	4.92	0.28
200	8.510	1.127	4.80	0.33
220	8.930	1.132	4.59	0.44
240	9.340	1.137	4.42	0.54
260	9.740	1.142	4.28	0.64
280	10.100	1.146	4.14	0.74
300	10.400	1.151	4.01	0.84

Table 43 Transport properties of Be

Temp (K)	Thermal Conductivity (Wm ⁻¹ K ⁻¹)	Electrical Resistivity (u ohm m)	Lorenz ratio x 10 ⁸ (V ² /K ²)	Thermo- power (µV/K)
70 75 80 85 90 95 100 110 120 130 140 150 160 170 180 190 220 240	199 212 223 234 243 252 258 268 274 276 275 272 268 262 257 251 244 233 221	0.01055 0.01066 0.01079 0.01094 0.01113 0.01135 0.01161 0.01225 0.01304 0.01400 0.01513 0.01641 0.01785 0.01944 0.02116 0.02303 0.02935 0.03412	3.00 3.01 3.01 3.01 3.01 3.00 2.99 2.98 2.97 2.97 2.97 2.98 3.00 3.02 3.04 3.06 3.10 3.15	-3.94 -4.06 -4.15 -4.21 -4.23 -4.23 -4.19 -4.07 -3.87 -3.63 -3.37 -3.10 -2.82 -2.56 -2.31 -2.08 -1.48 -1.15
260 280	211 201	0.03927 0.04477	3.19 3.22	-0.85 -0.58

Table 44 Transport properties of PO-3 graphite

Temp	Thermal Conductivity (Wm ⁻¹ K ⁻¹)	Electrical Resistivity (µ ohm m)	Lorenz ratio x 10 ⁸ (V ² /K ²)	Thermo- power (µV/K)
(K)	(Wm -K -)	(it onin in)	(V / IZ)	(LEV / IX)
6	0.047	26.31	20.5	-1.31
7	0.063	26.28	25.6	-1.51
8	0.085	26.24	27.7	-1.71
9	0.112	26.21	32.7	-1.91
10	0.146	26.17	39.3	-2.09
12	0.236	26.10	51.4	-2.41
14	0.357	26.02	66.3	-2.71
16	0.510	25.94	82.7	-2.98
18	0.598	25.86	100.0	-3.23
20	0.921	25.77	119.0	-3.46
25	1.630	25.54	167.0	-3.90
30	2.570	25.28	216.0	-4.17
35	3.710	25.02	265.0	-4.30
40	5.050	24.75	312.0	-4.33
45	6.570	24.47	357.0	-4.30
50	8.240	24.19	399.0 437.0	-4.24 -4.15
55 60	10.100	23.92	472.0	-4.05
65	14.000	23.37	504.0	-3.93
70	16.100	23.10	532.0	-3.82
. 75	18.300	22.83	556.0	-3.70
80	20.500	22.57	577.0	-3.58
85	22.700	22.32	596.0	-3.46
90	24.900	22.07	611.0	-3.34
95	27.200	21.82	624.0	-3.23
100	29.400	21.58	634.0	-3.12
110	33.800	21.11	648.0	-2.91
120	38.000	20.66	655.0	-2.69
150	42.100	20.22	656.0	-2.49
140	46.000	19.81	651.0	-2.29
150	49.700	19.41	644.0	-2.10
160	53.200	19.03	633.0	-1.91
170	56.400	18.66	620.0	-1.72
180	59.400	18.31	605.0	-1.54
190	62.200	17.97	589.0	-1.37
200	64.800	17.65	572.0	-1.20
220	69.200	17.04	536.0	-0.89
240	72.700	16.48	499.0	-0.59
260	75.400	15.96	463.0	-0.33
280	77.200	15.47	427.0	-0.11
300	78.300	15.03	392.0	0.09

TABLE 45 Absolute Thermopower of Normal Silver (Borelius, et al. $^{[15]}$)

Temperature (K)	Thermopower (µv/K)	Temperature (K)	Thermopower (µv/K)
2	0.005	73.1	0.48
4	0.01	83.1	0.49
6	0.01	93.1	0.50
8	0.015	103.1	0.52
10	0.03	113.1	0.54
13.1	0.12	133.1	0.61
18.1	0.27	153.1	0.68
23.1	0.355	173.1	0.76
28.1	0.405	193.1	0.845
33.1	0.44	213.1	0.93
38.1	0.465	233.1	1.02
43.1	0.48	253.1	1.11
53.1	0.48	273.1	1.20
63.1	0.48	293.1	1.295